Skip to main content
Log in

On the mechanical behavior of brittle coatings and layers

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

This paper examines several important issues concerning the mechanical properties of coatings, films, and layers. Major emphasis has been placed on descriptions of residual stresses and their influence on mechanical failure of the coating. The residual stresses are shown to depend on the details of the coating or oxidation process, the general curvature of the substrate, the waviness of the coating-substrate interface, and the stress relaxation characteristics of the coating. Residual stress-induced coating failures, which consist either of coating fractures or spalling, are described. The latter is usually more serious and has been afforded primary attention. It is shown that spalling of the coating is a consequence of buckling, when the coating is subject to significant residual compression. The conditions needed to induce buckling and subsequent spalling are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. K. Sinka, H. J. Levistein, and T. E. Smith,J. Appl. Phys. 49, 2423 (1978).

    Google Scholar 

  2. S. S. Chiang, D. B. Marshall, and A. G. Evans,Surfaces and Interfaces in Ceramic and Ceramic/Metal Systems, (J. A. Pask and A. G. Evans, eds. (Plenum, New York, 1981), p. 603.

    Google Scholar 

  3. T. Sumomogi, K. K. Kuwahara, and H. Fujiyama,Thin Solid Films 79, 91 (1981).

    Google Scholar 

  4. D. P. Whittle and J. Stringer,Phil. Trans. R. Soc. London, Ser. A 295 309 (1980).

    Google Scholar 

  5. J. K. Tien and F. S. Pettit,Metall. Trans. 3, 1587 (1972).

    Google Scholar 

  6. F. A. Golightly, F. H. Scott, and G. C. Wood,Oxid. Met. 10, 163 (1976).

    Google Scholar 

  7. K. L. Chopra,Thin Film Phenomena (McGraw-Hill, New York 1969).

    Google Scholar 

  8. J. V. Cathcart, ed.,Stress Effects on the Oxidation of Metals, AIME, New York, 1975).

    Google Scholar 

  9. S. Timoshenko and J. N. Goodier,Theory of Elasticity (McGraw-Hill, New York, 1950).

    Google Scholar 

  10. J. D. Eshelby,Proc. R. Soc. London, Ser. A. 241, 376 (1957).

    Google Scholar 

  11. J. V. Cathcart and G. F. Peterson, inStress Effects on the Oxidation of Metals, J. V. Cathcart, ed. (AIME, New York, 1975), p. 114.

    Google Scholar 

  12. F. N. Rhines and R. G. Connell, inStress Effects on the Oxidation of Metals, J. V. Cathcart, ed. (AIME, New York, 1975), p. 94.

    Google Scholar 

  13. E. P. EerNisse,Appl. Phys. Lett. 35, 8 (1979).

    Google Scholar 

  14. D. Delaunay and A. M. Huntz,J. Mater. Sci. 17, 2027 (1982).

    Google Scholar 

  15. M. V. Speight and J. E. Harris,Acta Metall. 26, 1043 (1978).

    Google Scholar 

  16. C. H. Hsueh and A. G. Evans,J. Appl. Phys. 54, 6672 (1983).

    Google Scholar 

  17. C. A. Anderson,Fracture Mechanics of Ceramics, (R. C. Bradt, F. F. Lange, D. P. H. Hasselman, and A. G. Evans, eds., (Plenum, New York in press).

  18. H. Engell and F. Wever,Acta Metall. 5, 695 (1957).

    Google Scholar 

  19. R. B. Marcus and T. T. Sheng,J. Electrochem. Soc. 129, 1278 (1982).

    Google Scholar 

  20. R. Tressler and R. C. Bradt, eds.,Deformation of Ceramic Materials (Plenum, New York, 1975).

    Google Scholar 

  21. R. M. Cannon, W. H. Rhodes, and A. H. Heuer,J. Am. Ceram. Soc. 63, 46 (1980).

    Google Scholar 

  22. R. Raj and M. F. Ashby,Metall. Trans. 2, 1113 (1971).

    Google Scholar 

  23. W. W. Mullins,J. Appl. Phys. 28, 333 (1957).

    Google Scholar 

  24. T. E. Mitchell, D. A. Voss, and E. P. Butler,J. Mater. Sci. 17, 1825 (1982).

    Google Scholar 

  25. A. G. Evans,J. Am. Ceram. Soc. 65, 242 (1982).

    Google Scholar 

  26. A. G. Evans and J. W. Hutchinson,Int. Jn. Solids Struct. in press.

  27. S. Timoshenko and J. M. Gere,Theory of Elastic Stability (Engineering Society Monograph, New York, 1936).

    Google Scholar 

  28. B. R. Lawn, A. G. Evans, and D. B. Marshall,J. Am. Ceram. Soc. 63, 574 (1980).

    Google Scholar 

  29. S. S. Chiang, D. B. Marshall, and A. G. Evans,J. Appl. Phys. 53, 312 (1982).

    Google Scholar 

  30. G. B. Crumley, unpublished work.

  31. J. D. Kuenzly and D. L. Douglass,Oxid. Met. 8, 139 (1974).

    Google Scholar 

  32. G. C. Kucynski, ed.Sintering Processes (Plenum, New York 1980).

    Google Scholar 

  33. R. M. Cannon and R. L. Coble, inDeformation of Ceramic Materials, R. Tessler and R. C. Bradt, eds. (Plenum, New York, 1975), p. 6.

    Google Scholar 

  34. R. Raj and M. F. Ashby,Acta Metall. 23, 653 (1975).

    Google Scholar 

  35. A. S. Argon,Recent Advances in the Creep of Engineering Alloys Structures B. Wilshire and D. R. Owen, eds. (Pineridge, Swansea, 1982), p. 1.

    Google Scholar 

  36. A. G. Evans, inRecent Advances in the Creep of Engineering Alloys Structures, B. Wilshire and D. R. Owen, eds. (Pineridge, Swansea, 1982), p. 53.

    Google Scholar 

  37. Y. M. Ito, M. Rosenblatt, L. Y. Cheng, F. F. Lange, and A. G. Evans,Int. J. Fract. 17, 483 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, A.G., Crumley, G.B. & Demaray, R.E. On the mechanical behavior of brittle coatings and layers. Oxid Met 20, 193–216 (1983). https://doi.org/10.1007/BF00656841

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00656841

Key words

Navigation