Skip to main content
Log in

High-Temperature Oxidation of Nickel-Based Cermet Coatings Containing WC and Al2O3 Nanosized Particles

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

This paper investigates the high-temperature oxidation of cermet coatings composed of two types of nanosized particles (WC and a mixture of WC and Al2O3) incorporated in nickel and produced by co-electrodeposition. For this purpose, high-temperature oxidation tests were conducted at three temperatures (500, 600, and 700 °C) in dry air with 6 time intervals up to 96 h and mass changes at each specific time interval was measured. Statistical techniques were used to calculate the oxidation rate constants (k) and growth-rate time constants (a) for all coatings. The confidence intervals associated with tests were also calculated. The results showed linear to sub-parabolic oxidation rates for coatings composed of only WC particles and sub-liner to liner oxidation rates for coating with both WC and Al2O3 particles. The reduction in oxidation rates for coatings with both WC and Al2O3 particles were correlated to the addition of Al2O3 particles in the matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D. B. Lee, J. H. Ko and S. C. Kwon, Surface and Coatings Technology 193, 292 (2005).

    Article  Google Scholar 

  2. I. Wright, V. Nagarajan and J. Stringer, Corrosion science 35, 841 (1993).

    Article  Google Scholar 

  3. I. Wright and V. Nagarajan, J. de Physique IV Colloque 3, 151 (1993).

    Google Scholar 

  4. Q. Feng, T. Li, H. Teng, X. Zhang, Y. Zhang, Ch Liu and J. Jin, Surface and Coatings Technology 202, 4137 (2008).

    Article  Google Scholar 

  5. L. M. Chang, J. H. Liu and R. J. Zhang, Corrosion behavior of electrodeposited Ni/Al 2 O 3 composite coating covered with a NaCl salt film at 800°C, Materials and Corrosion, No.999, (WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2010).

    Google Scholar 

  6. M. A. Farrokhzad and T. I. Khan, Oxidation of metals 81, 267 (2014).

    Article  Google Scholar 

  7. M. Pushpavanam and K. Balakrishnan, Bulletin of Electrochemistry 1, 251 (1985).

    Google Scholar 

  8. L. M. Castanier and W. E. Brigham, Journal of petroleum science and engineering 39, 125 (2003).

    Article  Google Scholar 

  9. M. A. Farrokhzad and T. I. Khan, IOP Conference Series: Materials Science and Engineering 60, 012011 (2014).

    Article  Google Scholar 

  10. N. Birks, G. H. Meier and F. S. Pettit, Introduction to the High-Temperature Oxidization, 2nd ed, (Cambridge University Press, United Kingdom, 2006).

    Book  Google Scholar 

  11. J. M. West, Basic Corrosion and Oxidation, 1st ed, (Ellis Horwood Ltd., Chichester, 1980).

    Google Scholar 

  12. S. A. Bradford, Fundamental of corrosion in gases, corrosion 13, (ASM, Materials park, 2001), pp. 62–76.

    Google Scholar 

  13. D. F. Susan and A. R. Marder, Oxidation of Metals 57, 131 (2002).

    Article  Google Scholar 

  14. D. F. Susan and A. Marder, Oxidation of Metals 57, 159 (2002).

    Article  Google Scholar 

  15. D. R. Gabe, Principle of metal surface treatment and protection, international series on materials science and technology, 2nd ed, (Oxford, Pergamon, 1978).

    Google Scholar 

  16. G. Parida, D. Chaira, M. Chopkar and A. Basu, Surface and Coatings Technology 205, 4871 (2011).

    Article  Google Scholar 

  17. Y. Boonyongmaneerat, K. Saengkiettiyut, S. Saenapitak and S. Sangsuk, Surface and Coatings Technology 203, 3590 (2009).

    Article  Google Scholar 

  18. T. G. Woodcock, Y. L. Cheung, J. R. A. Grenfell and J. S. Abell, Superconductor Science and Technology 18, 721 (2005).

    Article  Google Scholar 

  19. R. Peraldi, D. Monceau and B. Pieraggi, Oxidation of Metals 58, (3), 249 (2002).

    Article  Google Scholar 

  20. R. Peraldi, D. Monceau and B. Pieraggi, Oxidation of Metals 58, (3), 275 (2002).

    Article  Google Scholar 

  21. D. B. Lee, J. H. Ko and S. C. Kwon, Materials Science and Engineering A 380, 73 (2004).

    Article  Google Scholar 

  22. B. Phillips, Journal of The American Ceramic Society 46, 579 (1963).

    Article  Google Scholar 

  23. M. A. Rhamdhani, Metallurgical and Materials Transactions B 40B, 25 (2009).

    Article  Google Scholar 

  24. K. P. Trumble and M. Rühle, Acta metallurgica et materialia 39, 1915 (1991).

    Article  Google Scholar 

  25. E. Lassner and W. D. Schubert, Tungsten: properties, chemistry, technology of the element, alloys, and chemical compounds, 1st ed, (Springer Science + Business Media, LLC, 1999).

    Book  Google Scholar 

  26. J. M. Guilemany, J. M. de Paco, J. Nutting and J. R. Miguel, Metallurgical and Materials Transactions A 30A, 1913 (1999).

    Article  Google Scholar 

  27. Q. Zhan, L. Yu, F. Ye, Q. Xue and H. Li, Surface and Coatings Technology 206, 4068 (2012).

    Article  Google Scholar 

  28. J. M. Quintana-Melgoza, J. Cruz-Reyes and M. Avalos-Borja, Materials Letters 47, 314 (2001).

    Article  Google Scholar 

  29. L. Niu, Z. Li, Y. Xu, J. Sun, W. Hong, X. Liu, J. Wang and S. Yang, ACS applied materials & interfaces 5, (16), 8044 (2013).

    Article  Google Scholar 

  30. Y. Wang and Y. Wang, Advanced Materials Research 311–313, 545 (2011).

    Article  Google Scholar 

  31. Z. Song, J. Ma, H. Sun, W. Wang, Y. Song, L. Sun, Z. Liu and C. Gao, Ceram. Int. 35, 2675 (2009).

    Article  Google Scholar 

  32. A. Kuzmin, A. Kalinko and R. A. Evarestov, Central European Journal of Physics 9, 502 (2011).

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the department of Mechanical and Manufacturing Engineering University of Calgary, Alberta, Canada for providing laboratory access and technical supports. The authors are also greatly thankful to the financial supports provided by Alberta Innovates Technology Futures, Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Farrokhzad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farrokhzad, M.A., Khan, T.I. High-Temperature Oxidation of Nickel-Based Cermet Coatings Containing WC and Al2O3 Nanosized Particles. Oxid Met 86, 431–451 (2016). https://doi.org/10.1007/s11085-016-9645-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-016-9645-9

Keywords

Navigation