Skip to main content
Log in

Fabrication of micro-nano patterned materials mimicking the topological structure of extracellular matrix for biomedical applications

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

With the advent of tissue engineering and biomedicine, the creation of extracellular matrix (ECM) biomaterials for in vitro applications has become a prominent and promising strategy. These ECM materials provide physical, biochemical, and mechanical properties that guide cellular behaviors, such as proliferation, differentiation, migration, and apoptosis. Because micro- and nano-patterned materials have a unique surface topology and low energy replication process that directly affect cellular biological behaviors at the interface, the fabrication of micro-nano pattern biomaterials and the regulation of surface physical and chemical properties are of great significance in the fields of cell regulation, tissue engineering, and regenerative medicine. Herein, we provide a comprehensive review of the progress in the fabrication and application of patterned materials based on the coupling of mechanical action at the micro- and nano-meter scale, including photolithography, micro-contact printing, electron beam lithography, electrospinning, and 3D printing technology. Furthermore, a summary of the fabrication process, underlying principles, as well as the advantages and disadvantages of various technologies are reviewed. We also discuss the influence of material properties on the fabrication of micro- and nano-patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Discher, D. E.; Janmey, P.; Wang, Y. L. Tissue cells feel and respond to the stiffness of their substrate. Science 2005, 310, 1139–1143.

    Article  CAS  PubMed  Google Scholar 

  2. Satyam, A.; Kumar, P.; Fan, X. L.; Gorelov, A.; Rochev, Y.; Joshi, L.; Peinado, H.; Lyden, D.; Thomas, B.; Rodriguez, B. et al. Macromolecular crowding meets tissue engineering by self-assembly: A paradigm shift in regenerative medicine. Adv. Mater. 2014, 26, 3024–3034.

    Article  CAS  PubMed  Google Scholar 

  3. Ji, T. J.; Zhao, Y.; Ding, Y. P.; Nie, G. J. Using functional nanomaterials to target and regulate the tumor microenvironment: Diagnostic and therapeutic applications. Adv. Mater. 2013, 25, 3508–3525.

    Article  CAS  PubMed  Google Scholar 

  4. Özbek, S.; Balasubramanian, P. G.; Chiquet-Ehrismann, R.; Tucker, R. P.; Adams, J. C. The evolution of extracellular matrix. Mol. Biol. Cell 2010, 21, 4300–4305.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hynes, R. O. The extracellular matrix: Not just pretty fibrils. Science 2009, 326, 1216–1219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Page-McCaw, A.; Ewald, A. J.; Werb, Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat. Rev. Mol. Cell Biol. 2007, 8, 221–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Watt, F. M.; Huck, W. T. S. Role of the extracellular matrix in regulating stem cell fate. Nat. Rev. Mol. Cell Biol. 2013, 14, 467–473.

    Article  CAS  PubMed  Google Scholar 

  8. Lu, P. F.; Weaver, V. M.; Werb, Z. The extracellular matrix: A dynamic niche in cancer Progression. J. Cell Biol. 2012, 196, 395–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Theocharis, A. D.; Skandalis, S. S.; Gialeli, C.; Karamanos, N. K., Extracellular matrix structure. Advanced Drug Delivery Reviews 2016, 97, 4–27.

    Article  CAS  PubMed  Google Scholar 

  10. Sun, Y. B.; Chen, C. S.; Fu, J. P. Forcing stem cells to behave: A biophysical perspective of the cellular microenvironment. Annu. Rev. Biophys. 2012, 41, 519–542.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chen, F. M.; L, X. H. Advancing biomaterials of human origin for tissue engineering. Prog. Polym. Sci. 2016, 53, 86–168.

    Article  CAS  PubMed  Google Scholar 

  12. Park, J.; Kim, D. H.; Kim, H. N.; Wang, C. J.; Kwak, M. K.; Hur, E.; Suh, K. Y.; An, S. S.; Levchenko, A. Directed migration of cancer cells guided by the graded texture of the underlying matrix. Nat. Mater. 2016, 15, 792–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jeon, H.; Koo, S.; Reese, W. M.; Loskill, P.; Grigoropoulos, C. P.; Healy, K. E. Directing cell migration and organization via nanocrater-patterned cell-repellent interfaces. Nat. Mater. 2015, 14, 918–923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Doyle, A. D.; Yamada, K. M. Mechanosensing via cell-matrix adhesions in 3D microenvironments. Exp. Cell Res. 2016, 343, 60–66.

    Article  CAS  PubMed  Google Scholar 

  15. Mammoto, A.; Mammoto, T.; Ingber, D. E. Mehhanoeensitive mechanisms in transcriptional regulation. J. Cell Sci. 2012, 125, 3061–3073.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Wozniak, M. A.; Desai, R.; Solski, P. A.; Der, C. J.; Keely, P. J. ROCK-generated contractility regulates breast epithelial cell differentiation in response to the physical properties of a three-dimensional collagen matrix. J. Cell Biol. 2003, 163, 583–595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wolf, K.; Friedl, P. Mapping proteolytic cancer cell-extracellular matrix interfaces. Clin. Exp. Metastasis 2009, 26, 289–298.

    Article  CAS  PubMed  Google Scholar 

  18. Jansen, K. A.; Donato, D. M.; Balcioglu, H. E.; Schmidt, T.; Danen, E. H. J.; Koenderink, G. H. A guide to mechanobiology: Where biology and physics meet. Biochim. Biophys. Acta Mol. Cell Res. 2015, 1853, 3043–3052.

    Article  CAS  Google Scholar 

  19. Jaalouk, D. E.; Lammerding, J. Mechanotransduction gone awry. Nat. Rev. Mol. Cell Biol. 2009, 10, 63–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dupont, S.; Morsut, L.; Aragona, M.; Enzo, E.; Giulitti, S.; Cordenonsi, M.; Zanconato, F.; Le Digabel, J.; Forcato, M.; Bicciato, S. et al. Role of YAP/TAZ in mechanotransduction. Nature 2011, 474, 179–183.

    Article  CAS  PubMed  Google Scholar 

  21. Huveneers, S.; de Rooij, J. Mechanosensitive systems at the cadherin-F-actin interface. J. Cell Sci. 2013, 126, 403–413.

    Article  CAS  PubMed  Google Scholar 

  22. Hynes, R. O. Integrins: Versatility, modulation, and signaling in cell adhesion. Cell 1992, 69, 11–25.

    Article  CAS  PubMed  Google Scholar 

  23. Hynes, R. O. Integrins: Bidirectional, allosteric signaling machines. Cell 2002, 110, 673–687.

    Article  CAS  PubMed  Google Scholar 

  24. Brizzi, M. F.; Tarone, G.; Defilippi, P. Extracellular matrix, integrins, and growth factors as tailors of the stem cell niche. Curr. Opin. Cell Biol. 2012, 24, 645–651.

    Article  CAS  PubMed  Google Scholar 

  25. Dufort, C. C.; Paszek, M. J.; Weaver, V. M. Balancing forces: Architectural control of mechanotransduction. Nat. Rev. Mol. Cell Biol. 2011, 12, 308–319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Halder, G.; Dupont, S.; Piccolo, S. Transduction of mechanical and cytoskeletal cues by YAP and TAZ. Nat. Rev. Mol. Cell Biol. 2012, 13, 591–600.

    Article  CAS  PubMed  Google Scholar 

  27. Legate, K. R.; Wickström, S. A.; Fässler, R. Genetic and cell biological analysis of integrin outside-in signaling. Geees Dev. 2009, 23, 397–418.

    CAS  Google Scholar 

  28. Buitenhuis, M. The role of PI3K/protein kinase B (PKB/c-akt) in migration and homing of hematopoietic stem and progenitor cells. Curr. Opin. Hematol. 2011, 18, 226–230.

    Article  PubMed  Google Scholar 

  29. Discher, D. E.; Mooney, D. J.; Zandstra, P. W. Growth factors, matrices, and forces combine and control stem cells. Science 2009, 324, 1673–1677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rozario, T.; Desimone, D. W. The extracellular matrix in development and morphogenesis: A dynamic view. Dev. Biol. 2010, 341, 126–140.

    Article  CAS  PubMed  Google Scholar 

  31. Macbarb, R. F.; Makris, E. A.; Hu, J. C.; Athanasiou, K. A. A chondroitinase-ABC and TGF-β1 treatment regimen for enhancing the mechanical properties of tissue-engineered fibrocartilage. Acta Biomater. 2013, 9, 4626–4634.

    Article  CAS  PubMed  Google Scholar 

  32. Burdick, J. A.; Murphy, W. L. Moving from static to dynamic complexity in hydrogel design. Nat. Commun. 2012, 3, 1269.

    Article  PubMed  Google Scholar 

  33. Gong, T.; Lu, L. X.; Liu, D.; Liu, X.; Zhao, K.; Chen, Y. P.; Zhou, S. B. Dynamically tunable polymer microwells for directing mesenchymal stem cell differentiation into osteogenesis. J. Mater. Chem. B 2015, 3, 9011–9022.

    Article  CAS  PubMed  Google Scholar 

  34. Higuchi, A.; Ling, Q. D.; Chang, Y. N.; Hsu, S. T.; Umezawa, A. Physical cues of biomaterials guide stem cell differentiation fate. Chem. Rev. 2013, 113, 3297–3328.

    Article  CAS  PubMed  Google Scholar 

  35. Yang, G.; Li, X. L.; He, Y.; Ma, J. K.; Ni, G. L.; Zhou, S. B. From Nano to micro to macro: Electrospun hierarchically structured polymeric fibers for biomedical applications. Prog. Polym. Sci. 2018, 81, 80–113.

    Article  CAS  Google Scholar 

  36. Friess, F.; Nöchel, U.; Lendlein, A.; Wischke, C. Polymer micronetworks with shape-memory as future platform to explore shape-dependent biological effects. Adv. Healthc. Mater. 2014, 3, 1986–1990.

    Article  CAS  PubMed  Google Scholar 

  37. Hou, Y.; Jiang, N.; Zhang, L.; Li, Y. B.; Meng, Y. Z.; Han, D. M.; Chen, C.; Yang, Y.; Zhu, S. S. Oppositely charged polyurethane microspheres with tunable zeta potentials as an injectable dual-loaded system for bone repair. ACS Appl. Mater. Interfaces 2017, 9, 25808–25817.

    Article  CAS  PubMed  Google Scholar 

  38. Lu, T.; Hu, H.; Li, Y. Q.; Jiang, Q. S.; Su, J. L.; Lin, H.; Xiao, Y.; Zhu, X. D.; Zhang, X. D. Bioactive scaffolds based on collagen filaments with tunable physico-chemical and biological features. Soft Matter 2020, 16, 4540–4548.

    Article  CAS  PubMed  Google Scholar 

  39. Ajili, S. H.; Ebrahimi, N. G.; Soleimani, M. Polyurethane/polycaprolactane blend with shape memory effect as a proposed material for cardiovascular implants. Acta Biomater. 2009, 5, 1519–1530.

    Article  CAS  PubMed  Google Scholar 

  40. Tsuda, Y.; Kikuchi, A.; Yamato, M.; Nakao, A.; Sakurai, Y.; Umezu, M.; Okano, T. The use of patterned dual thermoresponsive surfaces for the collective recovery as co-cultured cell sheets. Biomaterials 2005, 26, 1885–1893.

    Article  CAS  PubMed  Google Scholar 

  41. Tsuda, Y.; Kikuchi, A.; Yamato, M.; Chen, G. P.; Okano, T. Heterotypic cell interactions on a dually patterned surface. Biochem. Biophys. Res. Commun. 2006, 348, 937–944.

    Article  CAS  PubMed  Google Scholar 

  42. Liu, X.; Zhao, K.; Gong, T.; Song, J.; Bao, C. Y.; Luo, E.; Weng, J.; Zhou, S. B. Delivery of growth factors using a smart porous nanocomposite scaffold to repair a mandibular bone defect. Biomacromolecules 2014, 15, 1019–1030.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang, D. J.; Cheng, Z. J.; Kang, H. J.; Yu, J. X.; Liu, Y. Y.; Jiang, L. A smart superwetting surface with responsivity in both surface chemistry and microstructure. Angew. Chem. 2018, 130, 3763–3767.

    Article  Google Scholar 

  44. Zhao, Q. L.; Wang, J.; Cui, H. Q.; Chen, H. X.; Wang, Y. L.; Du, X. M. Programmed shape-morphing scaffolds enabling facile 3D endothelialization. Adv. Funct. Mater. 2018, 28, 1801027.

    Article  Google Scholar 

  45. Gong, T.; Zhao, K.; Liu, X.; Lu, L. X.; Liu, D.; Zhou, S. B. A dynamically tunable, bioinspired micropatterned surface regulates vascular endothelial and smooth muscle cells growth at vascularization. Small 2016, 12, 5769–5778.

    Article  CAS  PubMed  Google Scholar 

  46. Liu, Y. J.; Guo, Y. J.; Zhang, X. Q.; Gao, G. Q.; Shi, C. Q.; Huang, G. Z.; Li, P. L.; Kang, Q.; Huang, X. Y.; Wu, G. N. Self-cleaning of superhydrophobic nanostructured surfaces at low humidity enhanced by vertical electric field. Nano Res. 2022, 15, 4732–4738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Feng, Z. P.; He, Q.; Wang, X.; Liu, J.; Qiu, J.; Wu, Y. F.; Yang, J. Multimode human-machine interface using a single-channel and patterned triboelectric sensor. Nano Res. 2022, 15, 9352–9358.

    Article  CAS  Google Scholar 

  48. Deng, J.; Zhao, C. S.; Spatz, J. P.; Wei, Q. Nanopatterned adhesive, stretchable hydrogel to control ligand spacing and regulate cell spreading and migration. ACS Nano 2017, 11, 8282–8291.

    Article  CAS  PubMed  Google Scholar 

  49. Han, Y. L.; Wang, S. Q.; Zhang, X. H.; Li, Y. H.; Huang, G. Y.; Qi, H.; Pingguan-Murphy, B.; Li, Y. H.; Lu, T. J.; Xu, F. Engineering physical microenvironment for stem cell based regenerative medicine. DrugDiscov. Today 2014, 19, 763–773.

    Article  Google Scholar 

  50. Peng, J. P.; Liu, P. J.; Chen, Y. T.; Guo, Z. H.; Liu, Y. H.; Yue, K. Templated synthesis of patterned gold nanoparticle assemblies for highly sensitive and reliable SERS substrates. Nano Res. 2023, 16, 5056–5064.

    Article  CAS  Google Scholar 

  51. Su, M.; Song, Y. L.. Printable Smart Materials and Devices: Strategies and Applications. Chem. Rev. 2022, 122, 5144–5164.

    Article  CAS  PubMed  Google Scholar 

  52. Zheng, Y. Y.; She, D. J.; Huang, H. H.; Lin, L.; Chen, S. H.; Lu, Y. P.; Liu, L.; Pang, Z. Q.; Yin, B. Versatile nanocomposite augments high-intensity focused ultrasound for high-efficacy sonodynamic therapy of glioma. Nano Res. 2022, 15, 9082–9091.

    Article  CAS  Google Scholar 

  53. Li, Q.; Zhang, X. D.; Ben, S.; Zhao, Z. H.; Ning, Y. Z.; Liu, K. S.; Jiang, L. Bio-inspired superhydrophobic magnesium alloy surfaces with active anti-corrosion and self-healing properties. Nano Res. 2023, 16, 3312–3319.

    Article  CAS  Google Scholar 

  54. Wallace, G. Q.; Read, S. T.; Mcrae, D. M.; Rosendahl, S. M.; Lagugné-labarthet, F. Exploiting anisotropy of plasmonic nanostructures with polarization modulation infrared linear dichroism microscopy (μPM-IRLD). Adv. Opt. Mater. 2018, 6, 1701336.

    Article  Google Scholar 

  55. Bi, P.; Zhang, M. C.; Li, S.; Lu, H. J.; Wang, H. M.; Liang, X. P.; Liang, H. R.; Zhang, Y. Y. Ultra-sensitive and wide applicable strain sensor enabled by carbon nanofibers with dual alignment for human machine interfaces. Nano Res. 2023, 16, 4093–4099.

    Article  CAS  Google Scholar 

  56. Menard, E.; Meitl, M. A.; Sun, Y. G.; Park, J. U.; Shir, D. J. L.; Nam, Y. S.; Jeon, S.; Rogers, J. A. Micro- and nanopatterning techniques for organic electronic and optoelectronic systems. Chem. Rev. 2007, 107, 1117–1160.

    Article  CAS  PubMed  Google Scholar 

  57. Wang, H. P.; Liu, Z. F.; Sun, Y. L.; Ping, X. F.; Xu, J. L.; Ding, Y. T.; Hu, H. W.; Xie, D.; Ren, T. L. Anisotropic electrical properties of aligned PtSe2 nanoribbon arrays grown by a pre-patterned selective selenization process. Nano Res. 2022, 15, 4668–4676.

    Article  CAS  Google Scholar 

  58. del Campo, A.; Arzt, E. Fabrication approaches for generating complex micro- and nanopatterns on polymeric surfaces. Chem. Rev. 2008, 108, 911–945.

    Article  CAS  PubMed  Google Scholar 

  59. Wu, P. F.; You, T. T.; Ren, Q. Y.; Xi, H. Y.; Liu, Q. Q.; Qin, F. J.; Gu, H. F.; Wang, Y.; Yan, W. S.; Gao, Y. K. et al. Interface electronic engineering of molybdenum sulfide/MXene hybrids for highly efficient biomimetic sensors. Nano Res. 2023, 16, 1158–1164.

    Article  CAS  Google Scholar 

  60. Li, X.; Sun, Y. P.; Li, L.; Su, X. X.. Response of mesenchymal stem cells to surface topography of scaffolds and the underlying mechanisms.. J. Mater. Chem. B 2023, 11, 2550–2567.

    Article  Google Scholar 

  61. Bell, L. D.; Kaiser, W. J. Observation of interface band structure by ballistic-electron-emission microscopy. Phys. Rev. Lett. 1988, 61, 2368–2371.

    Article  CAS  PubMed  Google Scholar 

  62. Fang, Z. Q.; Lin, X. F.; Lin, Y. H.; Gao, J. M.; Gong, L.; Lin, R. J.; Pan, G. Y.; Wu, J. Y.; Lin, W. J.; Chen, X. D. et al. Self-erasable dynamic surface patterns via controllable elastic modulus boosting multi-encoded and tamper-proof information storage. Nano Res. 2023, 16, 634–644.

    Article  Google Scholar 

  63. Kim, D. H.; Lee, H.; Lee, Y. K.; Nam, J. M.; Levchenko, A. Biomimetic nanopatterns as enabling tools for analysis and control of live cells. Adv. Mater. 2010, 22, 4551–4566.

    Article  CAS  PubMed  Google Scholar 

  64. Gattazzo, F.; Urciuolo, A.; Bonaldo, P. Extracellular matrix: A dynamic microenvironment for stem cell niche. Biochim. Biophys. Acta Gen. Subj. 2014, 1840, 2506–2519.

    Article  CAS  Google Scholar 

  65. Harrison, R. G. The cultivation of tissues in extraneous media as a method of morpho-genetic study. Anat. Rec. 1912, 6, 181–193.

    Article  Google Scholar 

  66. Chen, C. S.; Mrksich, M.; Huang, S.; Whitesides, G. M.; Ingber, D. E. Geometric control of cell life and death. Science 1997, 276, 1425–1428.

    Article  CAS  PubMed  Google Scholar 

  67. Teixeira, A. I.; Abrams, G. A.; Bertics, P. J.; Murphy, C. J.; Nealey, P. F. Epithelial contact guidance on well-defined micro- and nanostructured substrates. J. Cell Sci. 2003, 116, 1881–1892.

    Article  CAS  PubMed  Google Scholar 

  68. Grevesse, T.; Versaevel, M.; Circelli, G.; Desprez, S.; Gabriele, S. A simple route to functionalize polyacrylamide hydrogels for the independent tuning of mechanotransduction cues. Lab Chip 2013, 13, 777–780.

    Article  CAS  PubMed  Google Scholar 

  69. Polacheck, W. J.; German, A. E.; Mammoto, A.; Ingber, D. E.; Kamm, R. D. Mechanotransduction of fluid stresses governs 3D cell migration. Pron. Natl. Acad. Sci. USA 2014, 111, 2447–2452.

    Article  CAS  Google Scholar 

  70. Kothapalli, C. R.; van Veen, E.; de Valence, S.; Chung, S.; Zervantonakis, I. K.; Gertler, F. B.; Kamm, R. D. A high-throughput microfluidic assay to study neurite response to growth factor gradients. Lab Chip 2011, 11, 497–507.

    Article  CAS  PubMed  Google Scholar 

  71. Wu, J. D.; Mao, Z. W.; Han, L. L.; Zhao, Y. Z.; Xi, J. B.; Gao, C. Y. A density gradient of basic fibroblast growth factor guides directional migration of vascular smooth muscle cells. Colloids Surf. B: Biointerfaces 2014, 117, 290–295.

    Article  CAS  PubMed  Google Scholar 

  72. Sheats, J. R.; Smith, B. W. Minrolithography: Science and Technology; Marcel Dekker: New York, 1998.

    Google Scholar 

  73. Li, W. Z.; Xie, S. S.; Qian, L. X.; Chang, B. H.; Zou, B. S.; Zhou, W. Y.; Zhao, R. A.; Wang, G. Large-scale synthesis of aligned carbon nanotubes. Science 1996, 274, 1701–1703.

    Article  CAS  PubMed  Google Scholar 

  74. Crooks, R. M.; Zhao, M. Q.; Sun, L.; Chechik, V.; Yeung, L. K. Dendrimer-encapsulated metal nanoparticles: Synthesis, characterization, and applications to catalysis. Ann. Chem. Res. 2001, 34, 181–190.

    CAS  Google Scholar 

  75. Moreau, W. M. Semiconductor Lithography: Principles, Practices, and Materials; Plenum Press: New York, 1988.

    Book  Google Scholar 

  76. Rai-Choudhury, P. Handbook of Microlithography, Micromachining, and Microfabrication; SPIE Optical Engineering Press: Bellingham, 1997.

    Book  Google Scholar 

  77. Liu, N.; Sun, Q. C.; Yang, Z. S. et al.. Wrinkled interfaces: taking advantage of anisotropic wrinkling to periodically pattern polymer surfaces.. Adv. Sci. 2023, 10, 2207210.

    Article  CAS  Google Scholar 

  78. Li, L.; Dong, J. C.; Geng, D. C.; Li, M. H.; Fu, W.; Ding, F.; Hu, W. P.; Yang, H. Y. Multi-stage anisotropic etching of two-dimensional heterostructures. Nano Res. 2022, 15, 4909–4915.

    Article  CAS  Google Scholar 

  79. Wolf, M. P.; Salieb-Beugelaar, G.B.; Hunziker, P.. PDMS with designer functionalities Properties, modifications strategies, and applications. Prog. Polym. Sci. 2018, 83, 97–134.

    Article  CAS  Google Scholar 

  80. Bettinger, C. J.; Langer, R.; Borenstein, J. T. Engineering substrate topography at the micro- and nanoscale to control cell function. Angew. Chem., Int. Ed. 2009, 48, 5406–5415.

    Article  CAS  Google Scholar 

  81. Liddle, J. A.; Gallatin, G. M. Nanomanufacturing: A perspective. ACS Nano 2016, 10, 2995–3014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wang, Z. J.; Cao, D. W.; Xu, R.; Qu, S. C.; Wang, Z. G.; Lei, Y. Realizing ordered arrays of nanostructures: A versatile platform for converting and storing energy efficiently. Nano Energy 2016, 19, 328–362.

    Article  CAS  Google Scholar 

  83. Chen, W. Q.; Shao, Y.; Li, X.; Zhao, G.; Fu, J. P. Nanotopographical surfaces for stem cell fate control: Engineering mechanobiology from the bottom. Nano Today 2014, 9, 759–784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Revzin, A.; Tompkins, R. G.; Toner, M. Surface engineering with poly(ethylene glycol) photolithography to create high-density cell arrays on glass. Langmuir 2003, 19, 9855–9862.

    Article  CAS  Google Scholar 

  85. Yamato, M.; Konno, C.; Utsumi, M.; Kikuchi, A.; Okano, T. Thermally responsive polymer-grafted surfaces facilitate patterned cell seeding and co-culture. Biomaterials 2002, 23, 561–567.

    Article  CAS  PubMed  Google Scholar 

  86. Karp, J. M.; Yeo, Y.; Geng, W.; Cannizarro, C.; Yan, K.; Kohane, D. S.; Vunjak-Novakovic, G.; Langer, R. S.; Radisic, M. A photolithographic method to create cellular micropatterns. Biomaterials 2006, 27, 4755–4764.

    Article  CAS  PubMed  Google Scholar 

  87. Klein, F.; Striebel, T.; Fischer, J.; Jiang, Z. X.; Franz, C. M.; von Freymann, G.; Wegener, M.; Bastmeyer, M. Elastic fully three-dimensional microstructure scaffolds for cell force measurements. Adv. Mater. 2010, 22, 868–871.

    Article  CAS  PubMed  Google Scholar 

  88. Xu, F.; Wu, J. H.; Wang, S. Q.; Durmus, N. G.; Gurkan, U. A.; Demirci, U. Microengineering methods for cell-based microarrays and high-throughput drug-screening applications. Biofabrication 2011, 3, 034101.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Xu, R. C.; Mu, X. D.; Hu, Z. H.; Jia, C. Z.; Yang, Z. Y.; Yang, Z. L.; Fan, Y. P.; Wang, X. Y.; Wu, Y. F.; Lu, X. T. et al. Enhancing bioactivity and stability of polymer-based material-tissue interface through coupling multiscale interfacial interactions with atomic-thin TiO2 nanosheets. Nano Res. 2023, 16, 5247–5255.

    Article  CAS  PubMed  Google Scholar 

  90. Nie, Z. H.; Kumacheva, E. Patterning surfaces with functional polymers. Nat. Mater. 2008, 7, 277–290.

    Article  CAS  PubMed  Google Scholar 

  91. Yao, X.; Peng, R.; Ding, J. D. Cell-material interactions revealed via material techniques of surface patterning. Adv. Mater. 2013, 25, 5257–5286.

    Article  CAS  PubMed  Google Scholar 

  92. Kumar, A.; Whitesides, G. M. Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol “ink” followed by chemical etching. Appl. Phys. Lett. 1993, 63, 2002–2004.

    Article  CAS  Google Scholar 

  93. Workman, R. K.; Manne, S. Molecular transfer and transport in noncovalent microcontact printing. Langmuir 2004, 20, 805–815.

    Article  CAS  PubMed  Google Scholar 

  94. Hui, C. Y.; Jagota, A.; Lin, Y. Y.; Kramer, E. J. Constraints on microcontact printing imposed by stamp deformation. Langmuir 2002, 18, 1394–1407.

    Article  CAS  Google Scholar 

  95. Lee, J.; Abdeen, A. A.; Zhang, D.; Kilian, K. A. Directing stem cell fate on hydrogel substrates by controlling cell geometry, matrix mechanics and adhesion ligand composition. Biomaterials 2013, 34, 8140–8148.

    Article  CAS  PubMed  Google Scholar 

  96. Zheng, W. F.; Jiang, B.; Wang, D.; Zhang, W.; Wang, Z.; Jiang, X. Y. A microfluidic flow-stretch chip for investigating blood vessel biomechanics. Lab Chip 2012, 12, 3441–3450.

    Article  CAS  PubMed  Google Scholar 

  97. Théry, M.; Racine, V.; Pépin, A.; Piel, M.; Chen, Y.; Sibarita, J. B.; Bornens, M. The extracellular matrix guides the orientation of the cell division axis. Nat. Cell Biol. 2005, 7, 947–953.

    Article  PubMed  Google Scholar 

  98. Théry, M.; Racine, V.; Piel, M.; Pépin, A.; Dimitrov, A.; Chen, Y.; Sibarita, J. B.; Bornens, M. Anisotropy of cell adhesive microenvironment governs cell internal organization and orientation of polarity. Proc. Natl. Acad. Sci. USA 2006, 103, 19771–19776.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Cutiongco, M. F. A.; Goh, S. H.; Aid-Launais, R.; Le Visage, C.; Low, H. Y.; Yim, E. K. F. Planar and tubular patterning of micro and Nano-topographies on poly(vinyl alcohol) hydrogel for improved endothelial cell responses. Biomaterials 2016, 84, 184–195.

    Article  CAS  PubMed  Google Scholar 

  100. Wang, X. L.; Hu, X. H.; Kawazoe, N.; Yang, Y. N.; Chen, G. P. Manipulating cell nanomechanics using micropatterns. Adv. Funct. Mater. 2016, 26, 7634–7643.

    Article  CAS  Google Scholar 

  101. Choi, C. K.; Breckenridge, M. T.; Chen, C. S. Engineered materials and the cellular microenvironment: A strengthening interface between cell biology and bioengineering. Trends Cell Biol. 2010, 20, 705–714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Liu, S. D.; Nie, Y. F.; Zhang, Q.; Zhu, Y. T.; Li, X.; Han, D. Adhesion anisotropy substrate with Janus micropillar arrays guides cell polarized migration and division cycle. Angew. Chem., Int. Ed. 2019, 58, 4308–4312.

    Article  CAS  Google Scholar 

  103. Chou, S. Y.; Krauss, P. R.; Renstrom, P. J. Imprint of sub-25 nm vias and trenches in polymers. Appl. Phys. Lett. 1995, 67, 3114–3116.

    Article  CAS  Google Scholar 

  104. Chou, S. Y.; Krauss, P. R.; Renstrom, P. J. Imprint lithography with 25-nanometer resolution. Science 1996, 272, 85–87.

    Article  CAS  Google Scholar 

  105. Chou, S. Y.; Krauss, P. R.; Zhang, W.; Guo, L. J.; Zhuang, L. Sub-10 nm imprint lithography and applications. J. Vac. Sci. Technol. B 1997, 15, 2897–2904.

    Article  CAS  Google Scholar 

  106. Zhang, H.; Hou, R. X.; Xiao, P.; Xing, R. B.; Chen, T.; Han, Y. C.; Ren, P. G.; Fu, J. Single cell migration dynamics mediated by geometric confinement. Colloids Surf. B: Biointerfaces 2016, 115, 72–78.

    Google Scholar 

  107. Campanale, J. P.; Montell, D. J.. Who’s really in charge: Diverse follower cell behaviors in collective cell migration.. Curr. Opin. Cell Biol. 2023, 81, 102160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hua, F.; Sun, Y. G.; Gaur, A.; Meitl, M. A.; Bilhaut, L.; Rotkina, L.; Wang, J. F.; Geil, P.; Shim, M.; Rogers, J. A. et al. Polymer imprint lithography with molecular-scale resolution. Nano Lett. 2004, 4, 2467–2471.

    Article  CAS  Google Scholar 

  109. Hahmann, P.; Fortagne, O. 50 years of electron beam lithography: Contributions from Jena (Germany). Minroelentroe. Eng. 2009, 86, 438–441.

    CAS  Google Scholar 

  110. Chen, Y. F. Nanofabrication by electron beam lithography and its applications: A review. Microelectron. Eng. 2015, 135, 57–72.

    Article  CAS  Google Scholar 

  111. Lee, C. R.; Ok, J. G.; Jeong, M. Y. Nanopatterning on the cylindrical surface using an E-Beam pre-mapping algorithm. J. Micromech. Microeng. 2019, 29, 015004.

    Article  CAS  Google Scholar 

  112. Ogi, H.; Iwagami, S.; Nagakubo, A.; Taniguchi, T.; Ono, T. Nanoplate biosensor array using ultrafast heat transport through proteins. Sens. Actuators B: Chem. 2019, 278, 15–20.

    Article  CAS  Google Scholar 

  113. Zhang, G.; Wang, D. Y.; Möhwald, H. Ordered binary arrays of Au nanoparticles derived from colloidal lithography. Nano Lett. 2007, 7, 127–132.

    Article  CAS  PubMed  Google Scholar 

  114. Deckman, H. W.; Dunsmuir, J. H. Natural lithography. Appl. Phys. Lett. 1982, 41, 377–379.

    Article  CAS  Google Scholar 

  115. Li, Y. F.; Zhang, J. H.; Zhu, S. J.; Dong, H. P.; Wang, Z. H.; Sun, Z. Q.; Guo, J. R.; Yang, B. Bioinspired silicon hollow-tip arrays for high performance broadband anti-reflective and water-repellent coatings. J. Mater. Chem. 2009, 19, 1806–1810.

    Article  CAS  Google Scholar 

  116. Choi, D. G.; Yu, H. K.; Jang, S. G.; Yang, S. M. Colloidal lithographic nanopatterning via reactive ion etching. J. Am. Chem. Soc. 2004, 126, 7019–7025.

    Article  CAS  PubMed  Google Scholar 

  117. Mayer, M.; Schnepf, M. J.; Koenig, T. A. et al.. Colloidal Self-Assembly Concepts for Plasmonic Metasurfaces.. Adv. Optical Mater. 2019, 7, 1800564.

    Article  Google Scholar 

  118. Li, Y.; Koshizaki, N.; Cai, W. P. Periodic one-dimensional nanostructured arrays based on colloidal templates, applications, and devices. Coord. Chem. Rev. 2011, 255, 357–373.

    Article  CAS  Google Scholar 

  119. Yang, S. K.; Lei, Y. Recent progress on surface pattern fabrications based on monolayer colloidal crystal templates and related applications. Nanoscale 2011, 3, 2768–2782.

    Article  CAS  PubMed  Google Scholar 

  120. Ye, X. Z.; Qi, L. M. Two-dimensionally patterned nanostructures based on monolayer colloidal crystals: Controllable fabrication, assembly, and applications. Nano Today 2011, 6, 608–631.

    Article  CAS  Google Scholar 

  121. Kuncicky, D. M.; Prevo, B. G.; Velev, O. D. Controlled assembly of SERS substrates templated by colloidal crystal films. J. Mater. Chem. 2006, 16, 1207–1211.

    Article  CAS  Google Scholar 

  122. Yi, B. C.; Zhou, B. Y.; Dai, W. F.; Lu, X. W.; Liu, W. Soft nanofiber modified micropatterned substrates enhance native-like endothelium maturation via CXCR4/calcium-mediated actin cytoskeleton assembly. Nano Res. 2023, 16, 792–809.

    Article  CAS  Google Scholar 

  123. Kahl, M.; Voges, E.; Kostrewa, S.; Viets, C.; Hill, W. Periodically structured metallic substrates for SERS. Sens. Actuators B: Chem. 1998, 51, 285–291.

    Article  CAS  Google Scholar 

  124. Kim, S.; Marelli, B.; Brenckle, M. A.; Mitropoulos, A. N.; Gil, E. S.; Tsioris, K.; Tao, H.; Kaplan, D. L.; Omenetto, F. G. All-water-based electron-beam lithography using silk as a resist. Nat. Nanotechnol. 2014, 9, 306–310.

    Article  CAS  PubMed  Google Scholar 

  125. Zhang, J. H.; Li, Y. F.; Zhang, X. M.; Yang, B. Colloidal self-assembly meets nanofabrication: From two-dimensional colloidal crystals to nanostructure arrays. Adv. Mater. 2010, 22, 4249–4269.

    Article  CAS  PubMed  Google Scholar 

  126. Wang, P.; Bao, S. Y.; Qiao, S. Q.; Li, C.; Jiang, Z.; Song, H.; Wang, Y. L.; Zhan, Q. Q.; Huang, L. Luminescent nanoparticle-arrays synthesized via polymer pen lithography. Nano Res. 2023, 16, 3125–3129.

    Article  CAS  Google Scholar 

  127. Guarini, K. W.; Black, C. T.; Yeung, S. H. I. Optimization of diblock copolymer thin film self assembly. Adv. Mater. 2002, 14, 1290–1294.

    Article  CAS  Google Scholar 

  128. Segalman, R. A.; Hexemer, A.; Hayward, R. C.; Kramer, E. J. Ordering and melting of block copolymer spherical domains in 2 and 3 dimensions. Macromolecules 2003, 36, 3272–3288.

    Article  CAS  Google Scholar 

  129. Segalman, R. A.; Schaefer, K. E.; Fredrickson, G. H.; Kramer, E. J.; Magonov, S. Topographic templating of islands and holes in highly asymmetric block copolymer films. Macromolecules 2003, 36, 4498–4506.

    Article  CAS  Google Scholar 

  130. Birnkrant, M. J.; Li, C. Y.; Natarajan, L. V.; Tondiglia, V. P.; Sutherland, R. L.; Lloyd, P. F.; Bunning, T. J. Layer-in-layer hierarchical nanostructures fabricated by combining holographic polymerization and block copolymer self-assembly. Nano Lett. 2007, 7, 3128–3133.

    Article  CAS  PubMed  Google Scholar 

  131. Yang, K.; Jung, H.; Lee, H. R.; Lee, J. S.; Kim, S. R.; Song, K. Y.; Cheong, E.; Bang, J.; Im, S. G.; Cho, S. W. Multiscale, hierarchically patterned topography for directing human neural stem cells into functional neurons. ACS Nano 2014, 8, 7809–7822.

    Article  CAS  PubMed  Google Scholar 

  132. Wang, X.; Li, S. Y.; Yan, C.; Liu, P.; Ding, J. D. Fabrication of RGD micro/nanopattern and corresponding study of stem cell differentiation. Nano Lett. 2015, 15, 1457–1467.

    Article  CAS  PubMed  Google Scholar 

  133. Russell, T. P.; Coulon, G.; Deline, V. R.; Miller, D. C. Characteristics of the surface-induced orientation for symmetric diblock PS/PMMA copolymers. Macromolecules 1989, 22, 4600–4606.

    Article  CAS  Google Scholar 

  134. Fredrickson, G. H.; Liu, A. J.; Bates, F. S. Entropic corrections to the Flory-Huggins theory of polymer blends: Architectural and conformational effects. Macromolecules 1994, 27, 2503–2511.

    Article  CAS  Google Scholar 

  135. Li, R. R.; Dapkus, P. D.; Thompson, M. E.; Jeong, W. G.; Harrison, C.; Chaikin, P. M.; Register, R. A.; Adamson, D. H. Dense arrays of ordered GaAs nanostructures by selective area growth on substrates patterned by block copolymer lithography. Appl. Phys. Lett. 2000, 76, 1689–1691.

    Article  CAS  Google Scholar 

  136. Kim, H. C.; Jia, X.; Stafford, C. M.; Kim, D. H.; Mccarthy, T. J.; Tuominen, M.; Hawker, C. J.; Russell, T. P. A route to nanoscopic SiO2 posts via block copolymer templates. Adv. Mater. 2001, 13, 795–797.

    Article  CAS  Google Scholar 

  137. Khor, H. L.; Kuan, Y.; Kukula, H.; Tamada, K.; Knoll, W.; Moeller, M.; Hutmacher, D. W. Response of cells on surface-induced nanopatterns: Fibroblasts and mesenchymal progenitor cells. Biomacromolecules 2007, 8, 1530–1540.

    Article  CAS  PubMed  Google Scholar 

  138. Li, D.; Xia, Y. Electrospinning of nanofibers: Reinventing the wheel. Adv. Mater. 2004, 16, 1151–1170.

    Article  CAS  Google Scholar 

  139. Nie, Y. F.; Han, X. X.; Ao, Z.; Ning, S. W.; Li, X.; Han, D. Self-organizing gelatin-polycaprplactone materials with good fluid transmission can promote full-thickness skin regeneration. Mater. Chem. Front. 2021, 5, 7022–7031.

    Article  CAS  Google Scholar 

  140. Aigner, T. B.; DeSimone, E.; Scheibel, T. Biomedical applications of recombinant silk-based materials. Adv. Mater. 2018, 30, 1704636.

    Article  Google Scholar 

  141. Ramshaw, J. A. M. Biomedical applications of collagens. J. Biomed. Mater. Res. Part B: Appl. Biomater. 2016, 104, 665–675.

    Article  CAS  Google Scholar 

  142. Sofia, S.; Mccarthy, M. B.; Gronowicz, G.; Kaplan, D. L. Functionalized silk-based biomaterials for bone formation. J. Biomed. Mater. Res. 2001, 54, 139–148.

    Article  CAS  PubMed  Google Scholar 

  143. Li, Z. Q.; Liu, P.; Yang, T.; Sun, Y.; You, Q.; Li, J. L.; Wang, Z. L.; Han, B. Composite poly(L-lactic-acid)/silk fibroin scaffold prepared by electrospinning promotes chondrogenesis for cartilage tissue engineering. J. Biomater. Appl. 2016, 30, 1552–1565.

    Article  CAS  PubMed  Google Scholar 

  144. Lee, B. L. P.; Jeon, H.; Wang, A. J.; Yan, Z. Q.; Yu, J.; Grigoropoulos, C.; Li, S. Femtosecond laser ablation enhances cell infiltration into three-dimensional electrospun scaffolds. Acta Biomater. 2012, 8, 2648–2658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Ku, S. H.; Park, C. B. Human endothelial cell growth on mussel-inspired nanofiber scaffold for vascular tissue engineering. Biomaterials 2010, 31, 9431–9437.

    Article  CAS  PubMed  Google Scholar 

  146. Zhang, X. H.; Baughman, C. B.; Kaplan, D. L. In vitro evaluation of electrospun silk fibroin scaffolds for vascular cell growth. Biomaterials 2008, 29, 2217–2227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Uttayarat, P.; Perets, A.; Li, M. Y.; Pimton, P.; Stachelek, S. J.; Alferiev, I.; Composto, R. J.; Levy, R. J.; Lelkes, P. I. Micropatterning of three-dimensional electrospun polyurethane vascular grafts. Acta Biomater. 2010, 6, 4229–4237.

    Article  CAS  PubMed  Google Scholar 

  148. Li, X. K.; Chang, J. Preparation of bone-like apatitecollagen nanocomposites by a biomimetic process with phosphorylated collagen.. J. Biomed. Mater Res. 2008, 85A, 293–300.

    Article  CAS  Google Scholar 

  149. Schneider, O. D.; Weber, F.; Brunner, T. J.; Loher, S.; Ehrbar, M.; Schmidlin, P. R.; Stark, W. J. In vivo and in vitro evaluation of flexible, cottonwool-like nanocomposites as bone substitute material for complex defects. Acta Biomater. 2009, 5, 1775–1784.

    Article  CAS  PubMed  Google Scholar 

  150. Vargas, E. A. T.; do Vale Baracho, N. C.; de Brito, J.; de Queiroz, A. A. A. Hyperbranched polyglycerol electrospun nanofibers for wound dressing applications. Acta Biomater. 2010, 6, 1069–1078.

    Article  CAS  PubMed  Google Scholar 

  151. Iqbal, M. I.; Shi, S.; Kumar, G. M. S.; Hu, J. L. Evaporative/radiative electrospun membrane for personal cooling. Nano Res. 2023, 16, 2563–2571.

    Article  Google Scholar 

  152. Xu, H.; Li, H. Y.; Ke, Q. F.; Chang, J. An anisotropically and heterogeneously aligned patterned electrospun scaffold with tailored mechanical property and improved bioactivity for vascular tissue engineering. ACS Appl. Mater. Interfaces 2015, 7, 8706–8718.

    Article  CAS  PubMed  Google Scholar 

  153. Zhang, D. Y.; Qiu, D.; Gibson, M. A.; Zheng, Y. F.; Fraser, H. L.; Stjohn, D. H.; Easton, M. A. Additive manufacturing of ultrafine-grained high-strength titanium alloys. Nature 2019, 576, 91–95.

    Article  CAS  PubMed  Google Scholar 

  154. Zastrow, M. 3D printing gets bigger, faster and stronger. Nature 2020, 578, 20–23.

    Article  CAS  PubMed  Google Scholar 

  155. Darkes-Burkey, C.; Shepherd, R. F. High-resolution 3D printing in seconds. Nature 2020, 588, 594–595.

    Article  CAS  PubMed  Google Scholar 

  156. Dong, Z. Q.; Cui, H. J.; Zhang, H. D.; Wang, F.; Zhan, X.; Mayer, F.; Nestler, B.; Wegener, M.; Levkin, P. A. 3D printing of inherently nanoporous polymers via polymerization-induced phase separation. Nat. Commue. 2021, 12, 247.

    Article  CAS  Google Scholar 

  157. Takahashi, K.; Miyashita, I.; Ejima, H.; Watanabe, T.; Ide, K.; Takahashi, M. Calculation of sudden three-phase short-circuit current of turbine generators by 3D magnetic field analysis. Electr. Eng. Jpn. 2005, 153, 54–62.

    Article  Google Scholar 

  158. Kang, H. W.; Lee, S. J.; Ko, I. K.; Kengla, C.; Yoo, J. J.; Atala, A. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat. Biotechnol. 2016, 31, 312–319.

    Article  Google Scholar 

  159. Huang, J. G.; Ware, H. O. T.; Hai, R. H.; Shao, G. B.; Sun, C. Conformal geometry and multimaterial additive manufacturing through freeform transformation of building layers. Adv. Mater. 2021, 33, 2005672.

    Article  CAS  Google Scholar 

  160. Saadi, M. A. S. R.; Maguire, A.; Pottackal, N. T.; Thakur, M. S. H.; Ikram, M. M.; Hart, A. J.; Ajayan, P. M.; Rahman, M. M. Direct ink writing: A 3D printing technology for diverse materials. Adv. Mater. 2022, 34, 2108855.

    Article  CAS  Google Scholar 

  161. Wallin, T. J.; Pikul, J.; Shepherd, R. F. 3D printing of soft robotic systems. Nat. Rev. Mater. 2018, 3, 84–100.

    Article  Google Scholar 

  162. Farahani, R. D.; Dubé, M.; Therriault, D. Three-dimensional printing of multifunctional nanocomposites: Manufacturing techniques and applications. Adv. Mater. 2016, 28, 5794–5821.

    Article  CAS  PubMed  Google Scholar 

  163. Zhang, F.; Li, Z. A.; Xu, M. J.; Wang, S. Y.; Li, N.; Yang, J. Q. A review of 3D printed porous ceramics. J. Eur. Ceram. Soc. 2022, 42, 3351–3373.

    Article  Google Scholar 

  164. Su, R. Y.; Chen, J. Y.; Zhang, X. Q.; Wang, W. Q.; Li, Y.; He, R. J.; Fang, D. N. 3D-printed micro/Nano-scaled mechanical metamaterials: Fundamentals, technologies, progress, applications, and challenges. Small 2023, 19, 2206391.

    Article  CAS  Google Scholar 

  165. Lin, S. Y.; Fleming, J. G.; Hetherington, D. L.; Smith, B. K.; Biswas, R.; Ho, K. M.; Sigalas, M. M.; Zubrzycki, W.; Kurtz, S. R.; Bur, J. A three-dimensional photonic crystal operating at infrared wavelengths. Nature 1998, 394, 251–253.

    Article  CAS  Google Scholar 

  166. Zipfel, W. R.; Williams, R. M.; Webb, W. W. Nonlinear magic: Multiphoton microscopy in the biosciences. Nat. Biotechnol. 2003, 21, 1369–1377.

    Article  CAS  PubMed  Google Scholar 

  167. Zhang, D.; Chang, J. Patterning of electrospun fibers using electroconductive templates. Adv. Mater. 2007, 19, 3664–3667.

    Article  CAS  Google Scholar 

  168. Mitragotri, S.; Lahann, J. Physical approaches to biomaterial design. Nat. Mater. 2009, 8, 15–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Bet, M. R.; Goissis, G.; Vargas, S.; Selistre-De-araujo, H. S. Cell adhesion and cytotoxicity studies over polyanionic collagen surfaces with variable negative charge and wettability. Biomaterials 2003, 24, 131–137.

    Article  CAS  PubMed  Google Scholar 

  170. Hazeltine, L. B.; Selekman, J. A.; Palecek, S. P. Engineering the human pluripotent stem cell microenvironment to direct cell fate. Biotechnol. Adv. 2013, 31, 1002–1019.

    Article  CAS  PubMed  Google Scholar 

  171. Peng, R.; Yao, X.; Ding, J. D. Effect of cell anisotropy on differentiation of stem cells on micropatterned surfaces through the controlled single cell adhesion. Biomaterials 2011, 32, 8048–8057.

    Article  CAS  PubMed  Google Scholar 

  172. Engler, A. J.; Sen, S.; Sweeney, H. L.; Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 2006, 126, 677–689.

    Article  CAS  PubMed  Google Scholar 

  173. Kilian, K. A.; Bugarija, B.; Lahn, B. T.; Mrksich, M. Geometric cues for directing the differentiation of mesenchymal stem cells. Pron. Natl. Acad. Sci. USA 2010, 107, 4872–4877.

    Article  CAS  Google Scholar 

  174. Moore, S. W.; Roca-Cusachs, P.; Sheetz, M. P. Stretchy proteins on stretchy substrates: The important elements of integrin-mediated rigidity sensing. Dev. Cell 2010, 19, 194–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Lai, Y. X.; Xie, C.; Zhang, Z.; Lu, W. Y.; Ding, J. D. Design and synthesis of a potent peptide containing both specific and nonspecific cell-adhesion motifs. Biomaterials 2010, 31, 4809–4817.

    Article  CAS  PubMed  Google Scholar 

  176. Yan, C.; Sun, J. G.; Ding, J. D. Critical areas of cell adhesion on micropatterned surface. Biomaterials 2011, 32, 3931–3938.

    Article  CAS  PubMed  Google Scholar 

  177. Kim, T. H.; Shah, S.; Yang, L. T.; Yin, P. T.; Hossain, M. K.; Conley, B.; Choi, J. W.; Lee, K. B. Controlling differentiation of adipose-derived stem cells using combinatorial graphene hybrid-pattern arrays. ACS Nano 2015, 9, 3780–3790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Gentile, F.; Tirinato, L.; Battista, E.; Causa, F.; Liberale, C.; Di Fabrizio, E. M.; Decuzzi, P. Cells preferentially grow on rough substrates. Biomaterials 2010, 31, 7205–7212.

    Article  CAS  PubMed  Google Scholar 

  179. van Wachem, P. B.; Hogt, A. H.; Beugeling, T.; Feijen, J.; Bantjes, A.; Detmers, J. P.; van Aken, W. G. Adhesion of cultured human endothelial cells onto methacrylate polymers with varying surface wettability and charge. Biomaterials 1987, 8, 323–328.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Key Research Program of Frontier Sciences of CAS (No. QYKJZD-SSW-SLH02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, Y., Han, D. & Li, X. Fabrication of micro-nano patterned materials mimicking the topological structure of extracellular matrix for biomedical applications. Nano Res. 17, 4244–4258 (2024). https://doi.org/10.1007/s12274-023-6330-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6330-6

Keywords

Navigation