Skip to main content
Log in

Anisotropic electrical properties of aligned PtSe2 nanoribbon arrays grown by a pre-patterned selective selenization process

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

This study proposes a feasible and scalable production strategy to naturally obtain aligned platinum diselenide (PtSe2) nanoribbon arrays with anisotropic conductivity. The anisotropic properties of two-dimensional (2D) materials, especially transition-metal dichalcogenides (TMDs), have attracted great interest in research. The dependence of physical properties on their lattice orientations is of particular interest because of its potential in diverse applications, such as nanoelectronics and optoelectronics. One-dimensional (1D) nanostructures facilitate many feasible production strategies for shaping 2D materials into unidirectional 1D nanostructures, providing methods to investigate the anisotropic properties of 2D materials based on their lattice orientations and dimensionality. The natural alignment of zigzag (ZZ) PtSe2 nanoribbons is experimentally demonstrated using angle-resolved polarized Raman spectroscopy (ARPRS), and the selective growth mechanism is further theoretically revealed by comparing edges and edge energies of different orientations using the density functional theory (DFT). Back-gate field-effect transistors (FETs) are also constructed of unidirectional PtSe2 nanoribbons to investigate their anisotropic electrical properties, which align with the results of the projected density of states (DOS) calculations. This work provides new insight into the anisotropic properties of 2D materials and a feasible investigation strategy from experimental and theoretical perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

    Article  CAS  Google Scholar 

  2. Li, X. F.; Yang, L. M.; Si, M. W.; Li, S. C.; Huang, M. Q.; Ye, P. D.; Wu, Y. Q. Performance potential and limit of MoS2 transistors. Adv. Mater. 2015, 27, 1547–1552.

    Article  CAS  Google Scholar 

  3. Zhou, H. L.; Wang, C.; Shaw, J. C.; Cheng, R.; Chen, Y.; Huang, X. Q.; Liu, Y.; Weiss, N. O.; Lin, Z. Y.; Huang, Y. et al. Large area growth and electrical properties of p-type WSe2 atomic layers. Nano Lett. 2015, 15, 709–713.

    Article  CAS  Google Scholar 

  4. Das, P. K.; Di Sante, D.; Vobornik, I.; Fujii, J.; Okuda, T.; Bruyer, E.; Gyenis, A.; Feldman, B. E.; Tao, J.; Ciancio, R. et al. Layer-dependent quantum cooperation of electron and hole states in the anomalous semimetal WTe2. Nat. Commun. 2016, 7, 10847.

    Article  CAS  Google Scholar 

  5. Hsu, C.; Frisenda, R.; Schmidt, R.; Arora, A.; De Vasconcellos, S. M.; Bratschitsch, R.; Van Der Zant, H. S. J.; Castellanos-Gomez, A. Thickness-dependent refractive index of 1L, 2L, and 3L MoS2, MoSe2, WS2, and WSe2. Adv. Opt. Mater. 2019, 7, 1900239.

    Article  Google Scholar 

  6. Camellini, A.; Mennucci, C.; Cinquanta, E.; Martella, C.; Mazzanti, A.; Lamperti, A.; Molle, A.; De Mongeot, F. B.; Valle, G. D.; Zavelani-Rossi, M. Ultrafast anisotropic exciton dynamics in nanopatterned MoS2 sheets. ACS Photonics 2018, 5, 3363–3371.

    Article  CAS  Google Scholar 

  7. Kolobov, A. V.; Fons, P.; Tominaga, J. Electronic excitation-induced semiconductor-to-metal transition in monolayer MoTe2. Phys. Rev. B Condens. Matter. 2016, 94, 094114.

    Article  Google Scholar 

  8. Ma, H. F.; Qian, Q.; Qin, B.; Wan, Z.; Wu, R. X.; Zhao, B.; Zhang, H. M.; Zhang, Z. C.; Li, J.; Zhang, Z. W. et al. Controlled synthesis of ultrathin PtSe2 nanosheets with thickness-tunable electrical and magnetoelectrical properties. Adv. Sci. 2021, 2103507.

  9. Hu, H. W.; Wang, H. P.; Sun, Y. L.; Li, J. W.; Wei, J. L.; Xie, D.; Zhu, H. W. Out-of-plane and in-plane ferroelectricity of atom-thick two-dimensional InSe. Nanotechnology 2021, 32, 385202.

    Article  CAS  Google Scholar 

  10. Sun, M. X.; Fang, Q. Y.; Xie, D.; Sun, Y. L.; Qian, L.; Xu, J. L.; Xiao, P.; Teng, C. J.; Li, W. W.; Ren, T. L. et al. Heterostructured graphene quantum dot/WSe2/Si photodetector with suppressed dark current and improved detectivity. Nano Res. 2018, 11, 3233–3243.

    Article  CAS  Google Scholar 

  11. Lee, D.; Hwang, E.; Lee, Y.; Choi, Y.; Kim, J. S.; Lee, S.; Cho, J. H. Multibit MoS2 photoelectronic memory with ultrahigh sensitivity. Adv. Mater. 2016, 28, 9196–9202.

    Article  CAS  Google Scholar 

  12. Lin, Z. Y.; Liu, Y.; Halim, U.; Ding, M. N.; Liu, Y. Y.; Wang, Y. L.; Jia, C. C.; Chen, P.; Duan, X. D.; Wang, C. et al. Solution-processable 2D semiconductors for high-performance large-area electronics. Nature 2018, 562, 254–258.

    Article  CAS  Google Scholar 

  13. Ge, J.; Luo, T. C.; Lin, Z. Z.; Shi, J. P.; Liu, Y. Z.; Wang, P. Y.; Zhang, Y. F.; Duan, W. H.; Wang, J. Magnetic moments induced by atomic vacancies in transition metal dichalcogenide flakes. Adv. Mater. 2021, 33, 2005465.

    Article  CAS  Google Scholar 

  14. Arab, A.; Li, Q. L. Anisotropic thermoelectric behavior in armchair and zigzag mono- and fewlayer MoS2 in thermoelectric generator applications. Sci. Rep. 2015, 5, 13706.

    Article  Google Scholar 

  15. Ataca, C.; Şahin, H.; Aktürk, E.; Ciraci, S. Mechanical and electronic properties of MoS2 nanoribbons and their defects. J. Phys. Chem. C 2011, 115, 3934–3941.

    Article  CAS  Google Scholar 

  16. Soleimani-Amiri, S.; Rudi, S. G. Effects of sulfur line vacancy defects on the electronic and optical properties of armchair MoS2 nanoribbon. Opt. Mater. 2020, 110, 110491.

    Article  CAS  Google Scholar 

  17. Tong, L.; Duan, X. Y.; Song, L. Y.; Liu, T. D.; Ye, L.; Huang, X. Y.; Wang, P.; Sun, Y. H.; He, X.; Zhang, L. J. et al. Artificial control of in-plane anisotropic photoelectricity in monolayer MoS2. Appl. Mater. Today 2019, 15, 203–211.

    Article  Google Scholar 

  18. Xia, F. N.; Wang, H.; Jia, Y. C. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 2014, 5, 4458.

    Article  CAS  Google Scholar 

  19. Qiao, J. S.; Kong, X. H.; Hu, Z. X.; Yang, F.; Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 2014, 5, 4475.

    Article  CAS  Google Scholar 

  20. Dolui, K.; Pemmaraju, C. D.; Sanvito, S. Electric field effects on armchair MoS2 nanoribbons. ACS Nano 2012, 6, 4823–4834.

    Article  CAS  Google Scholar 

  21. Pan, J.; Wang, R.; Zhou, X. Y.; Zhong, J. S.; Xu, X. Y.; Hu, J. G. Transition-metal doping induces the transition of electronic and magnetic properties in armchair MoS2 nanoribbons. Phys. Chem. Chem. Phys. 2017, 19, 24594–24604.

    Article  CAS  Google Scholar 

  22. Nayeri, M.; Fathipour, M. A numerical analysis of electronic and optical properties of the zigzag MoS2 nanoribbon under uniaxial strain. IEEE Trans. Electron Devices 2018, 65, 1988–1994.

    Article  CAS  Google Scholar 

  23. Feng, X. W.; Huang, X.; Chen, L.; Tan, W. C.; Wang, L.; Ang, K. W. High mobility anisotropic black phosphorus nanoribbon field-effect transistor. Adv. Funct. Mater. 2018, 28, 1801524.

    Article  Google Scholar 

  24. Zhao, Y. S.; Zhang, G.; Nai, M. H.; Ding, G. Q.; Li, D. F.; Liu, Y.; Hippalgaonkar, K.; Lim, C. T.; Chi, D. Z.; Li, B. W. et al. Probing the physical origin of anisotropic thermal transport in black phosphorus nanoribbons. Adv. Mater. 2018, 30, 1804928.

    Article  Google Scholar 

  25. Yim, C.; Lee, K.; McEvoy, N.; O’Brien, M.; Riazimehr, S.; Berner, N. C.; Cullen, C. P.; Kotakoski, J.; Meyer, J. C.; Lemme, M. C. et al. High-performance hybrid electronic devices from layered PtSe2 films grown at low temperature. ACS Nano 2016, 10, 9550–9558.

    Article  CAS  Google Scholar 

  26. Liu, Z. F.; Sun, Y. L.; Cao, H. Q.; Xie, D.; Li, W.; Wang, J. O.; Cheetham, A. K. Unzipping of black phosphorus to form zigzag-phosphorene nanobelts. Nat. Commun. 2020, 11, 3917.

    Article  CAS  Google Scholar 

  27. Watts, M. C.; Picco, L.; Russell-Pavier, F. S.; Cullen, P. L.; Miller, T. S.; Bartuś, S. P.; Payton, O. D.; Skipper, N. T.; Tileli, V.; Howard, C. A. Production of phosphorene nanoribbons. Nature 2019, 568, 216–220.

    Article  CAS  Google Scholar 

  28. Xie, C.; Zeng, L. H.; Zhang, Z. X.; Tsang, Y. H.; Luo, L. B.; Lee, J. H. High-performance broadband heterojunction photodetectors based on multilayered PtSe2 directly grown on a Si substrate. Nanoscale 2018, 10, 15285–15293.

    Article  CAS  Google Scholar 

  29. Zhao, Y. D.; Qiao, J. S.; Yu, Z. H.; Yu, P.; Xu, K.; Lau, S. P.; Zhou, W.; Liu, Z.; Wang, X. R.; Ji, W. et al. High-electron-mobility and air-stable 2D layered PtSe2 FETs. Adv. Mater. 2017, 29, 1604230.

    Article  Google Scholar 

  30. Zeng, L. H.; Lin, S. H.; Li, Z. J.; Zhang, Z. X.; Zhang, T. F.; Xie, C.; Mak, C. H.; Chai, Y.; Lau, S. P.; Luo, L. B. et al. Fast, self-driven, air-stable, and broadband photodetector based on vertically aligned PtSe2/GaAs heterojunction. Adv. Funct. Mater. 2018, 28, 1705970.

    Article  Google Scholar 

  31. Jiang, W.; Wang, X. D.; Chen, Y.; Wu, G. J.; Ba, K.; Xuan, N. N.; Sun, Y. Y.; Gong, P.; Bao, J. X.; Shen, H. et al. Large-area high quality PtSe2 thin film with versatile polarity. InfoMat 2019, 1, 260–267.

    CAS  Google Scholar 

  32. Avsar, A.; Cheon, C. Y.; Pizzochero, M.; Tripathi, M.; Ciarrocchi, A.; Yazyev, O. V.; Kis, A. Probing magnetism in atomically thin semiconducting PtSe2. Nat. Commun. 2020, 11, 4806.

    Article  CAS  Google Scholar 

  33. Yao, W.; Wang, E. Y.; Huang, H. Q.; Deng, K.; Yan, M. Z.; Zhang, K. N.; Miyamoto, K.; Okuda, T.; Li, L. F.; Wang, Y. L. et al. Direct observation of spin-layer locking by local Rashba effect in monolayer semiconducting PtSe2 film. Nat. Commun. 2017, 8, 14216.

    Article  CAS  Google Scholar 

  34. Yan, M. Z.; Wang, E. Y.; Zhou, X.; Zhang, G. Q.; Zhang, H. Y.; Zhang, K. N.; Yao, W.; Lu, N. P.; Yang, S. Z.; Wu, S. L. et al. High quality atomically thin PtSe2 films grown by molecular beam epitaxy. 2D Mater. 2017, 4, 045015.

    Article  Google Scholar 

  35. Gong, Y. N.; Lin, Z. T.; Chen, Y. X.; Khan, Q.; Wang, C.; Zhang, B.; Nie, G. H.; Xie, N.; Li, D. L. Two-dimensional platinum diselenide: Synthesis, emerging applications, and future challenges. Nano-Micro Lett. 2020, 12, 174.

    Article  CAS  Google Scholar 

  36. Ping, X. F.; Liang, D.; Wu, Y. Y.; Yan, X. X.; Zhou, S. X.; Hu, D. K.; Pan, X. Q.; Lu, P. F.; Jiao, L. Y. Activating a two-dimensional PtSe2 basal plane for the hydrogen evolution reaction through the simultaneous generation of atomic vacancies and Pt clusters. Nano Lett. 2021, 21, 3857–3863.

    Article  CAS  Google Scholar 

  37. Van Der Zande, A. M.; Huang, P. Y.; Chenet, D. A.; Berkelbach, T. C.; You, Y. M.; Lee, G. H.; Heinz, T. F.; Reichman, D. R.; Muller, D. A.; Hone, J. C. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 2013, 12, 554–561.

    Article  CAS  Google Scholar 

  38. O’Brien, M.; McEvoy, N.; Motta, C.; Zheng, J. Y.; Berner, N. C.; Kotakoski, J.; Elibol, K.; Pennycook, T. J.; Meyer, J. C.; Yim, C. et al. Raman characterization of platinum diselenide thin films. 2D Mater. 2016, 3, 021004.

    Article  Google Scholar 

  39. Loudon, R. The Raman effect in crystals. Adv. Phys. 2001, 50, 813–864.

    Article  Google Scholar 

  40. Zhao, Y. D.; Qiao, J. S.; Yu, P.; Hu, Z. X.; Lin, Z. Y.; Lau, S. P.; Liu, Z.; Ji, W.; Chai, Y. Extraordinarily strong interlayer interaction in 2D layered PtS2. Adv. Mater. 2016, 28, 2399–2407.

    Article  CAS  Google Scholar 

  41. Azizimanesh, A.; Peña, T.; Sewaket, A.; Hou, W. H.; Wu, S. M. Uniaxial and biaxial strain engineering in 2D MoS2 with lithographically patterned thin film stressors. Appl. Phys. Lett. 2021, 118, 213104.

    Article  CAS  Google Scholar 

  42. Liu, L. N.; Wu, J. X.; Wu, L. Y.; Ye, M.; Liu, X. Z.; Wang, Q.; Hou, S. Y.; Lu, P. F.; Sun, L. F.; Zheng, J. Y. et al. Phase-selective synthesis of 1T′ MoS2 monolayers and heterophase bilayers. Nat. Mater. 2018, 17, 1108–1114.

    Article  CAS  Google Scholar 

  43. Chen, K. Y.; Deng, J. K.; Ding, X. D.; Sun, J.; Yang, S.; Liu, J. Z. Ferromagnetism of 1T′-MoS2 nanoribbons stabilized by edge reconstruction and its periodic variation on nanoribbons width. J. Am. Chem. Soc. 2018, 140, 16206–16212.

    Article  CAS  Google Scholar 

  44. Gan, C. K.; Srolovitz, D. J. First-principles study of graphene edge properties and flake shapes. Phys. Rev. B Condens. Matter. 2010, 81, 125445.

    Article  Google Scholar 

  45. Ansari, L.; Monaghan, S.; McEvoy, N.; Coileáin, C. Ó.; Cullen, C. P.; Lin, J.; Siris, R.; Stimpel-Lindner, T.; Burke, K. F.; Mirabelli, G. et al. Quantum confinement-induced semimetal-to-semiconductor evolution in large-area ultra-thin PtSe2 films grown at 400 °C. npj 2D Mater. Appl. 2019, 3, 33.

    Article  Google Scholar 

  46. Wang, L.; Zhang, S. F.; McEvoy, N.; Sun, Y. Y.; Huang, J. W.; Xie, Y. F.; Dong, N. N.; Zhang, X. Y.; Kislyakov, I. M.; Nunzi, J. M. et al. Nonlinear optical signatures of the transition from semiconductor to semimetal in PtSe2. Laser Photon. Rev. 2019, 13, 1900052.

    Article  Google Scholar 

  47. Kandemir, A.; Akbali, B.; Kahraman, Z.; Badalov, S. V.; Ozcan, M.; Iyikanat, F.; Sahin, H. Structural, electronic and phononic properties of PtSe2: From monolayer to bulk. Semicond. Sci. Technol. 2018, 33, 085002.

    Article  Google Scholar 

  48. Madsen, G. K. H.; Singh, D. J. BoltzTra P. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 2006, 175, 67–71.

    Article  CAS  Google Scholar 

  49. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Condens. Matter. 1996, 54, 11169–11186.

    Article  CAS  Google Scholar 

  50. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

    Article  CAS  Google Scholar 

  51. Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid—metal—amorphous—semiconductor transition in germanium. Phys. Rev. B Condens. Matter. 1994, 49, 14251–14269.

    Article  CAS  Google Scholar 

  52. Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B Condens. Matter. 1993, 47, 558–561.

    Article  CAS  Google Scholar 

  53. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  54. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B Condens. Matter. 1999, 59, 1758–1775.

    Article  CAS  Google Scholar 

  55. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B Condens. Matter. 1994, 50, 17953–17979.

    Article  Google Scholar 

  56. Monkhorst, H. J.; Pack, J. D. Special points for brillouin-zone integrations. Phys. Rev. B Condens. Matter. 1976, 13, 5188–5192.

    Article  Google Scholar 

Download references

Acknowledgements

H. Wang and Z. Liu contributed equally to this work. The authors are grateful for the financial support from the National Natural Science Foundation of China (Nos. 52072204 and 62104017), the National Postdoctoral Program for Innovative Talents of China (No. BX20200049), and China Postdoctoral Science Foundation (No. 2021M690013). We also acknowledge the Tsinghua Xuetang Talents Program for providing the computational resources.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yilin Sun, Dan Xie or Tianling Ren.

Electronic Supplementary Material

12274_2022_4110_MOESM1_ESM.pdf

Anisotropic electrical properties of aligned PtSe2 nanoribbon arrays grown by a pre-patterned selective selenization process

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Liu, Z., Sun, Y. et al. Anisotropic electrical properties of aligned PtSe2 nanoribbon arrays grown by a pre-patterned selective selenization process. Nano Res. 15, 4668–4676 (2022). https://doi.org/10.1007/s12274-022-4110-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4110-3

Keywords

Navigation