Skip to main content
Log in

Self-erasable dynamic surface patterns via controllable elastic modulus boosting multi-encoded and tamper-proof information storage

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Dynamic surface patterns (DSPs) have attracted significant interest in anti-counterfeiting, enabling information to be stored, encrypted and decrypted in response to external stimuli. However, creating dynamic surface patterns, capable of controlling wrinkling time and independently modulating different information in both wrinkled and fluorescent states, remains a tremendous challenge. These limit DSPs to further enhance tamper-proofing capacity and extend the information storage density. Here, a rationally designed patterning strategy based on controllable elastic modulus was demonstrated to fabricate self-erasable dynamic surface patterns (S-DSPs) that increase information storage density. These novel S-DSPs strategically integrated amino co-oligomers (ACOs) with the 9-anthracenemethanol (9-AM) as skin layers, designing a bilayer multi-encoding system which could carry several different types of information with wrinkled and fluorescent patterns. The ACOs with relatively low molecular weight can endow the elastic modulus of skin layers with a wide range of regulation. As a result, the difference between the compressive strain and the critical wrinkle strain in the bilayer system would be precisely modulated by photo-dimerization to form quick-response (minimum < 1 min) and self-erasable (3 min∼8 days) wrinkled patterns for S-DSPs. Meanwhile, the fluorescence pattern could be independently erased and reprogrammed without affecting the change in the wrinkle pattern under modulus-controlled conditions. Moreover, controllable self-erasure in S-DSPs significantly develops tamper-proof capabilities in a supply chain. This original strategy could provide a new approach to the tamper-proof, high-density, and multi-encoded information storage in the product security or inkless printing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, S.; Ma, T. J.; Bai, J.; Ma, X. D.; Yin, J.; Jiang, X. S. Photodynamic pattern memory surfaces with responsive wrinkled and fluorescent patterns. Adv. Sci. 2020, 7, 2002372.

    Article  CAS  Google Scholar 

  2. Tang, Z. L.; Liu, X. P.; Liu, X. C.; Wu, J. Y.; Lin. W. J.; Lin, X. F.; Yi, G. B. Unclonable anti-counterfeiting labels based on plasmonic-patterned nanostructures. Adv. Eng. Mater., in press, https://doi.org/10.1002/adem.202101701.

  3. Jiang, B. L.; Liu, L. T.; Gao, Z. P.; Feng, Z. Y.; Zheng, Y. Q.; Wang, W. S. Fast dual-stimuli-responsive dynamic surface wrinkles with high bistability for smart windows and rewritable optical displays. ACS Appl. Mater. Interfaces 2019, 11, 40406–40415.

    Article  CAS  Google Scholar 

  4. Wu, J. Y.; Li, J. W.; Liu, X. C.; Gong, L.; Chen, J. Y.; Tang, Z. L.; Lin, W. J.; Mu, Y. X.; Lin, X. F.; Hong, W. et al. Unclonable photonic crystal hydrogels with controllable encoding capacity for anticounterfeiting. ACS Appl. Mater. Interfaces 2022, 14, 2369–2380.

    Article  CAS  Google Scholar 

  5. Wu, J. Y.; Liu, X. P.; Liu, X. C.; Tang, Z. L.; Huang, Z. Y.; Lin, W. J.; Lin, X. F.; Yi, G. B. A high-security mutual authentication system based on structural color-based physical unclonable functions labels. Chem. Eng. J. 2022, 439, 135601.

    Article  CAS  Google Scholar 

  6. Cheng, C. H.; Yang, D. S.; Kim, J.; Deotare, P. B. Self-erasable and rewritable optoexcitonic platform for antitamper hardware. Adv. Opt. Mater. 2020, 8, 2001287.

    Article  CAS  Google Scholar 

  7. Schlapak, R.; Danzberger, J.; Armitage, D.; Morgan, D.; Ebner, A.; Hinterdorfer, P.; Pollheimer, P.; Gruber, H. J.; Schäffler, F.; Howorka, S. Nanoscale DNA tetrahedra improve biomolecular recognition on patterned surfaces. Small 2012, 8, 89–97.

    Article  CAS  Google Scholar 

  8. Choueiri, R. M.; Galati, E.; Thérien-Aubin, H.; Klinkova, A.; Larin, E. M.; Querejeta-Fernández, A.; Han, L. L.; Xin, H. L.; Gang, O.; Zhulina, E. B. et al. Surface patterning of nanoparticles with polymer patches. Nature 2016, 538, 79–83.

    Article  CAS  Google Scholar 

  9. Yu, Z. W.; Yun, F. F.; Wang, Y. Q.; Yao, L.; Dou, S. X.; Liu, K. S.; Jiang, L.; Wang, X. L. Desert beetle-inspired superwettable patterned surfaces for water harvesting. Small 2017, 13, 1701403.

    Article  Google Scholar 

  10. Monroe, J. I.; Shell, M. S. Computational discovery of chemically patterned surfaces that effect unique hydration water dynamics. Proc. Natl. Acad. Sci. USA 2018, 115, 8093–8098.

    Article  CAS  Google Scholar 

  11. Gonçalves, R.; Marques-Almeida, T.; Miranda, D.; Silva, M. M.; Cardoso, V. F.; Costa, C. M.; Lanceros-Méndez, S. Enhanced performance of fluorinated separator membranes for lithium ion batteries through surface micropatterning. Energy Storage Mater. 2019, 21, 124–135.

    Article  Google Scholar 

  12. Chi, J. J.; Zhang, X. X.; Wang, Y. T.; Shao, C. M.; Shang, L. R.; Zhao, Y. J. Bio-inspired wettability patterns for biomedical applications. Mater. Horiz. 2021, 8, 124–144.

    Article  CAS  Google Scholar 

  13. Liu, H.; Zhang, L.; Huang, J. Y.; Zhang, X. L.; Mao, J. J.; Chen, Z.; Mao, Q. H.; Ge, M. Z.; Lai, Y. K. Superwetting patterned PDMS/PMMA materials by facile one-step electro-spraying for signal expression and liquid transportation. Chem. Eng. J. 2022, 431, 133206.

    Article  CAS  Google Scholar 

  14. Bae, W. G.; Kim, H. N.; Kim, D.; Park, S. H.; Jeong, H. E.; Suh, K. Y. 25th anniversary article: Scalable multiscale patterned structures inspired by nature: The role of hierarchy. Adv. Mater. 2014, 26, 675–700.

    Article  CAS  Google Scholar 

  15. Chung, J. Y.; Nolte, A. J.; Stafford, C. M. Surface wrinkling: A versatile platform for measuring thin-film properties. Adv. Mater. 2011, 23, 349–368.

    Article  CAS  Google Scholar 

  16. Ferrarese Lupi, F.; Giammaria, T. J.; Miti, A.; Zuccheri, G.; Carignano, S.; Sparnacci, K.; Seguini, G.; De Leo, N.; Boarino, L.; Perego, M. et al. Hierarchical order in Dewetted block copolymer thin films on chemically patterned surfaces. ACS Nano 2018, 12, 7076–7085.

    Article  CAS  Google Scholar 

  17. Xie, J. X.; Han, X.; Ji, H. P.; Wang, J. J.; Zhao, J. X.; Lu, C. H. Self-supported crack-free conducting polymer films with stabilized wrinkling patterns and their applications. Sci. Rep. 2016, 6, 36686.

    Article  CAS  Google Scholar 

  18. Xie, J. X.; Wang, J. J.; Zhao, J. X.; Yang, C. F.; Li, L. L.; Lu, C. H. Synergism of self-wrinkling and ultrasonic cleaning to fabricate hierarchically patterned conducting films. Adv. Mater. Interfaces 2018, 5, 1800905.

    Article  Google Scholar 

  19. Lee, S. G.; Lee, D. Y.; Lim, H. S.; Lee, D. H.; Lee, S.; Cho, K. Switchable transparency and wetting of elastomeric smart windows. Adv. Mater. 2010, 22, 5013–5017.

    Article  CAS  Google Scholar 

  20. Cho, S. H.; Joo, P.; Zhang, C.; Lewis, E. A.; Vogt, B. D.; Zacharia, N. S. Patterned hydrophilic patches on slippery surfaces with anticounterfeit applications. ACS Appl. Polym. Mater. 2022, 4, 100–110.

    Article  CAS  Google Scholar 

  21. Chen, G. X.; Weng, Y. L.; Wang, W. W.; Hong, D. M.; Zhou, L. P.; Zhou, X. T.; Wu, C. X.; Zhang, Y. A.; Yan, Q.; Yao, J. M. et al. Spontaneous formation of random wrinkles by atomic layer infiltration for anticounterfeiting. ACS Appl. Mater. Interfaces 2021, 13, 27548–27556.

    Article  CAS  Google Scholar 

  22. Xie, M. X.; Lin, G. J.; Ge, D. T.; Yang, L. L.; Zhang, L. Z.; Yin, J.; Jiang, X. S. Pattern memory surface (PMS) with dynamic wrinkles for Unclonable Anticounterfeiting. ACS Mater. Lett. 2019, 1, 77–82.

    Article  CAS  Google Scholar 

  23. Shou, H. Z.; Ma, T. J.; Li, T. T.; Chen, S.; Ma, X. D.; Yin, J.; Jiang, X. S. Photo-oxidation-controlled surface pattern with responsive wrinkled topography and fluorescence. Chem. —Eur. J. 2021, 27, 5810–5816.

    Article  CAS  Google Scholar 

  24. González-Henríquez, C. M.; Sagredo-Oyarce, D. H.; Sarabia-Vallejos, M. A.; Rodríguez-Hernández, J. Fabrication of micro and sub-micrometer wrinkled hydrogel surfaces through thermal and photocrosslinking processes. Polymer 2016, 101, 24–33.

    Article  Google Scholar 

  25. Kim, H. S.; Crosby, A. J. Solvent-responsive surface via wrinkling instability. Adv. Mater. 2011, 23, 4188–4192.

    Article  CAS  Google Scholar 

  26. Wu, K.; Sun, Y.; Yuan, H. Z.; Zhang, J. Y.; Liu, G.; Sun, J. Harnessing dynamic wrinkling surfaces for smart displays. Nano Lett. 2020, 20, 4129–4135.

    Article  CAS  Google Scholar 

  27. Um, E.; Cho, Y. K.; Jeong, J. Spontaneous wrinkle formation on Hydrogel surfaces using photoinitiator diffusion from oil-water interface. ACS Appl. Mater. Interfaces 2021, 13, 15837–15846.

    Article  CAS  Google Scholar 

  28. Zhou, L. W.; Hu, K. M.; Zhang, W. M.; Meng, G.; Yin, J.; Jiang, X. S. Regulating surface wrinkles using light. Natl. Sci. Rev. 2020, 7, 1247–1257.

    Article  CAS  Google Scholar 

  29. Zong, C. Y.; Zhao, Y.; Ji, H. P.; Han, X.; Xie, J. X.; Wang, J. J.; Cao, Y. P.; Jiang, S. C.; Lu, C. H. Tuning and erasing surface wrinkles by reversible visible-light-induced photoisomerization. Angew. Chem., Int. Ed. 2016, 55, 3931–3935.

    Article  CAS  Google Scholar 

  30. Li, W. B.; Liu, Y. J.; Leng, J. S. Harnessing wrinkling patterns using shape memory polymer microparticles. ACS Appl. Mater. Interfaces 2021, 13, 23074–23080.

    Article  CAS  Google Scholar 

  31. Li, T. T.; Hu, K. M.; Ma, X. D.; Zhang, W. M.; Yin, J.; Jiang, X. S. Hierarchical 3D patterns with dynamic wrinkles produced by a photocontrolled Diels-Alder reaction on the surface. Adv. Mater. 2020, 32, 1906712.

    Article  CAS  Google Scholar 

  32. Hou, H. H.; Yin, J.; Jiang, X. S. Reversible Diels-Alder reaction to control wrinkle patterns: From dynamic chemistry to dynamic patterns. Adv. Mater. 2016, 28, 9126–9132.

    Article  CAS  Google Scholar 

  33. Chilivery, R.; Begum, G.; Chaitanya, V.; Rana, R. K. Tunable surface wrinkling by a bio-inspired polyamine anion coacervation process that mediates the assembly of polyoxometalate nanoclusters. Angew. Chem., Int. Ed. 2020, 59, 8160–8165.

    Article  CAS  Google Scholar 

  34. Zhang, Y.; Liu, F.; Zhao, J. M.; Yan, M.; Wang, X.; Wang, W. S. Dual pH-/photo-responsive color switching systems for dynamic rewritable paper. ACS Appl. Mater. Interfaces 2022, 14, 5825–5833.

    Article  CAS  Google Scholar 

  35. Zhang, X. A.; Jiang, Y. J.; Venkatesh, R. B.; Raney, J. R.; Stebe, K. J.; Yang, S.; Lee, D. Scalable manufacturing of bending-induced surface wrinkles. ACS Appl. Mater. Interfaces 2020, 12, 7658–7664.

    Article  CAS  Google Scholar 

  36. Jiang, B. L.; Liu, L. T.; Gao, Z. P.; Wang, W. S. A general and robust strategy for fabricating mechanoresponsive surface wrinkles with dynamic switchable transmittance. Adv. Opt. Mater. 2018, 6, 1800195.

    Article  Google Scholar 

  37. Zhou, L. W.; Yang, L. L.; Liu, Y.; Xu, Z.; Yin, J.; Ge, D. T.; Jiang, X. S. Dynamic structural color from wrinkled thin films. Adv. Opt. Mater. 2020, 8, 2000234.

    Article  CAS  Google Scholar 

  38. Wang, J. J.; Zheng, Y.; Li, L. L.; Liu, E. P.; Zong, C. Y.; Zhao, J. X.; Xie, J. X.; Xu, F.; König, T. A. F.; Grenzer Saphiannikova, M. et al. All-optical reversible azo-based wrinkling patterns with high aspect ratio and polarization-independent orientation for light-responsive soft photonics. ACS Appl. Mater. Interfaces 2019, 11, 25595–25604.

    Article  CAS  Google Scholar 

  39. Zhou, L. W.; Ma, T. J.; Li, T. T.; Ma, X. D.; Yin, J.; Jiang, X. S. Dynamic interpenetrating polymer network (IPN) strategy for multiresponsive hierarchical pattern of reversible wrinkle. ACS Appl. Mater. Interfaces 2019, 11, 15977–15985.

    Article  CAS  Google Scholar 

  40. Xie, M. X.; Xu, F. G.; Zhang, L. Z.; Yin, J.; Jiang, X. S. Reversible surface dual-pattern with simultaneously dynamic wrinkled topography and fluorescence. ACS Macro Lett. 2018, 7, 540–545.

    Article  CAS  Google Scholar 

  41. Ma, T. J.; Li, T. T.; Zhou, L. W.; Ma, X. D.; Yin, J.; Jiang, X. S. Dynamic wrinkling pattern exhibiting tunable fluorescence for anticounterfeiting applications. Nat. Commun. 2020, 11, 1811.

    Article  CAS  Google Scholar 

  42. Cerda, E.; Mahadevan, L. Geometry and physics of wrinkling. Phys. Rev. Lett. 2003, 90, 074302.

    Article  CAS  Google Scholar 

  43. Cutolo, A.; Pagliarulo, V.; Merola, F.; Coppola, S.; Ferraro, P.; Fraldi, M. Wrinkling prediction, formation and evolution in thin films adhering on polymeric substrata. Mater. Des. 2020, 187, 108314.

    Article  CAS  Google Scholar 

  44. Hou, H. H.; Hu, K. M.; Lin, H. B.; Forth, J.; Zhang, W. M.; Russell, T. P.; Yin, J.; Jiang, X. S. Reversible surface patterning by dynamic crosslink gradients: Controlling buckling in 2D. Adv. Mater. 2018, 30, 1803463.

    Article  Google Scholar 

  45. Takeshima, T.; Liao, W. Y.; Nagashima, Y.; Beppu, K.; Hara, M.; Nagano, S.; Seki, T. Photoresponsive surface wrinkle morphologies in liquid crystalline polymer films. Macromolecules 2015, 48, 6378–6384.

    Article  CAS  Google Scholar 

  46. Chen, T. L.; Lin, Y. P.; Chien, C. H.; Chen, Y. C.; Yang, Y. J.; Wang, W. L.; Chien, L. F.; Hsueh, H. Y. Fabrication of frog-skin-inspired slippery Antibiofouling coatings through degradable block copolymer wrinkling. Adv. Funct. Mater. 2021, 31, 2170309.

    Article  CAS  Google Scholar 

  47. Li, F. D.; Hou, H. H.; Yin, J.; Jiang, X. S. Multi-responsive wrinkling patterns by the photoswitchable supramolecular network. ACS Macro Lett. 2017, 6, 848–853.

    Article  CAS  Google Scholar 

  48. Ji, H. P.; Zhao, Y.; Zong, C. Y.; Xie, J. X.; Han, X.; Wang, J. J.; Zhao, J. X.; Jiang, S. C.; Cao, Y. P.; Lu, C. H. Simple and versatile strategy to prevent surface wrinkling by visible light irradiation. ACS Appl. Mater. Interfaces 2016, 8, 19127–19134.

    Article  CAS  Google Scholar 

  49. Li, F. D.; Hou, H. H.; Yin, J.; Jiang, X. S. Near-infrared light-responsive dynamic wrinkle patterns. Sci. Adv. 2018, 4, eaar5762.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundations of China (Nos. 51903058, 51873042, and 51833011), Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education (No. PCFM-2922A02), and Guangzhou Basic and Applied Basic Research Foundation (No. 202201010382).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaofeng Lin or Guobin Yi.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Z., Lin, X., Lin, Y. et al. Self-erasable dynamic surface patterns via controllable elastic modulus boosting multi-encoded and tamper-proof information storage. Nano Res. 16, 634–644 (2023). https://doi.org/10.1007/s12274-022-4958-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4958-2

Keywords

Navigation