Skip to main content
Log in

Luminescent nanoparticle-arrays synthesized via polymer pen lithography

  • Communication
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We report a high-throughput approach to generating lanthanide-doped upconversion nanoparticle (UCNP) arrays through polymer pen lithography (PPL), where instead of the expensive block co-polymer, two types of polymers are employed with one working as ink carrier, e.g., polyethylene glycol-400 (PEG-400) to facilitate smooth transfer from the tip to the substrate and the other, e.g., polyvinyl pyrrolidone (PVP), as chelator to ensure successful patterning of metal ions. The strong coordination of PVP with rare earth ions (RE3+) is the key for weakening the interaction between RE3+ ions and the carrier PEG-400 so that the good mobility of ink can be retained. Further experimental results have shown that besides PVP, small molecules with functional groups that can coordinate with RE3+ ions, such as oleic acid, can also serve the same role as PVP, which greatly enriches the ink library for PPL. Over 1 cm2 area arrays comprising individual UCNP can be reliably generated with characteristic upconversion luminescence. This strategy not only allows reliable production of individual UCNP arrays, it also paves new avenue to the precise synthesis of multifunctional NPs for lasing, imaging, encryption, and anticounterfeiting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Kar, A.; Patra, A. Impacts of core-shell structures on properties of lanthanide-based nanocrystals: Crystal phase, lattice strain, downconversion, upconversion and energy transfer. Nanoscale 2012, 4, 3608–3619.

    Article  CAS  Google Scholar 

  2. Haase, M.; Schäfer, H. Upconverting nanoparticles. Angew. Chem., Int. Ed. 2011, 50, 5808–5829.

    Article  CAS  Google Scholar 

  3. Gorris, H. H.; Wolfbeis, O. S. Photon-upconverting nanoparticles for optical encoding and multiplexing of cells, biomolecules, and microspheres. Angew. Chem., Int. Ed. 2013, 52, 3584–3600.

    Article  CAS  Google Scholar 

  4. Tian, G.; Gu, Z. J.; Zhou, L. J.; Yin, W. Y.; Liu, X. X.; Yan, L.; Jin, S.; Ren, W. L.; Xing, G. M.; Li, S. J. et al. Mn2+ dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery. Adv. Mater. 2012, 24, 1226–1231.

    Article  CAS  Google Scholar 

  5. Auzel, F. Upconversion and anti-stokes processes with f and d ions in solids. Chem. Rev. 2004, 104, 139–174.

    Article  CAS  Google Scholar 

  6. Downing, E.; Hesselink, L.; Ralston, J.; Macfarlane, R. A three-color, solid-state, three-dimensional display. Science 1996, 273, 1185–1189.

    Article  CAS  Google Scholar 

  7. Xie, H. B.; Zhang, J. N.; Wang, F.; Shen, D. Y.; Wang, J.; Tang, D. Y. High-power 1,640 nm Er:Y2O3 ceramic laser at room temperature. Opt. Lett. 2022, 47, 246–248.

    Article  CAS  Google Scholar 

  8. Sun, L. D.; Dong, H.; Zhang, P. Z.; Yan, C. H. Upconversion of rare earth nanomaterials. Annu. Rev. Phys. Chem. 2015, 66, 619–642.

    Article  CAS  Google Scholar 

  9. Zhang, H. X.; Chen, Z. H.; Liu, X.; Zhang, F. A mini-review on recent progress of new sensitizers for luminescence of lanthanide doped nanomaterials. Nano Res. 2020, 13, 1795–1809.

    Article  CAS  Google Scholar 

  10. Kostyuk, A. B.; Vorotnov, A. D.; Ivanov, A. V.; Volovetskiy, A. B.; Kruglov, A. V.; Sencha, L. M.; Liang, L. E.; Guryev, E. L.; Vodeneev, V. A.; Deyev, S. M. et al. Resolution and contrast enhancement of laser-scanning multiphoton microscopy using thulium-doped upconversion nanoparticles. Nano Res. 2019, 12, 2933–2940.

    Article  CAS  Google Scholar 

  11. Mor, F. M.; Sienkiewicz, A.; Forró, L.; Jeney, S. Upconversion particle as a local luminescent Brownian probe: A photonic force microscopy study. ACS Photonics 2014, 7, 1251–1257.

    Article  Google Scholar 

  12. Lu, Y. Q.; Zhao, J. B.; Zhang, R.; Liu, Y. J.; Liu, D. M.; Goldys, E. M.; Yang, X. S.; Xi, P.; Sunna, A.; Lu, J. et al. Tunable lifetime multiplexing using luminescent nanocrystals. Nat. Photonics 2014, 8, 32–36.

    Article  CAS  Google Scholar 

  13. You, W. W.; Tu, D. T.; Li, R. F.; Zheng, W.; Chen, X. Y. “Chameleon-like” optical behavior of lanthanide-doped fluoride nanoplates for multilevel anti-counterfeiting applications. Nano Res. 2011, 12, 1417–1422.

    Article  Google Scholar 

  14. Hartman, T.; Geitenbeek, R. G.; Whiting, G. T.; Weckhuysen, B. M. Operando monitoring of temperature and active species at the single catalyst particle level. Nat. Catal. 2019, 2, 986–996.

    Article  CAS  Google Scholar 

  15. Xie, S. T.; Du, Y. L.; Zhang, Y.; Wang, Z. M.; Zhang, D. L.; He, L.; Qiu, L. P.; Jiang, J. H.; Tan, W. H. Aptamer-based optical manipulation of protein subcellular localization in cells. Nat. Commun. 2020, 11, 1347.

    Article  CAS  Google Scholar 

  16. Ke, J. X.; Lu, S.; Li, Z.; Shang, X. Y.; Li, X. J.; Li, R. F.; Tu, D. T.; Chen, Z.; Chen, X. Y. Multiplexed intracellular detection based on dual-excitation/dual-emission upconversion nanoprobes. Nano Res. 2020, 13, 1955–1961.

    Article  CAS  Google Scholar 

  17. Chen, S.; Weitemier, A. Z.; Zeng, X.; He, L. M.; Wang, X. Y.; Tao, Y. Q.; Huang, A. J. Y.; Hashimotodani, Y.; Kano, M.; Iwasaki, H. et al. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics. Science 2018, 359, 679–684.

    Article  CAS  Google Scholar 

  18. Richards, B. S.; Hudry, D.; Busko, D.; Turshatov, A.; Howard, I. A. Photon upconversion for photovoltaics and photocatalysis: A critical review. Chem. Rev. 2021, 121, 9165–9195.

    Article  CAS  Google Scholar 

  19. Liu, X. Y.; Liu, W. D.; Yang, B. Deep-elliptical-silver-nanowell arrays (d-EAgNWAs) fabricated by stretchable imprinting combining colloidal lithography: A highly sensitive plasmonic sensing platform. Nano Res. 2019, 12, 845–853.

    Article  CAS  Google Scholar 

  20. Bhingardive, V.; Menahem, L.; Schvartzman, M. Soft thermal nanoimprint lithography using a nanocomposite mold. Nano Res. 2018, 11, 2705–2714.

    Article  CAS  Google Scholar 

  21. Williams, G.; Hunt, M.; Boehm, B.; May, A.; Taverne, M.; Ho, D.; Giblin, S.; Read, D.; Rarity, J.; Allenspach, R. et al. Two-photon lithography for 3D magnetic nanostructure fabrication. Nano Res. 2017, 11, 845–854.

    Article  Google Scholar 

  22. Piner, R. D.; Zhu, J.; Xu, F.; Hong, S.; Mirkin, C. A. “Dip-pen” nanolithography. Science 1999, 283, 661–663.

    Article  CAS  Google Scholar 

  23. Demers, L. M.; Ginger, D. S.; Park, S. J.; Li, Z.; Chung, S. W.; Mirkin, C. A. Direct patterning of modified oligonucleotides on metals and insulators by dip-pen nanolithography. Science 2002, 296, 1836–1838.

    Article  CAS  Google Scholar 

  24. Lim, J. H.; Ginger, D. S.; Lee, K. B.; Heo, J.; Nam, J. M.; Mirkin, C. A. Direct-write dip-pen nanolithography of proteins on modified silicon oxide surfaces. Angew. Chem., Int. Ed. 2003, 42, 2309–2312.

    Article  CAS  Google Scholar 

  25. Huang, L.; Braunschweig, A. B.; Shim, W.; Qin, L. D.; Lim, J. K.; Hurst, S. J.; Huo, F. W.; Xue, C.; Jang, J. W.; Mirkin, C. A. Matrixassisted dip-pen nanolithography and polymer pen lithography. Small 2010, 6, 1077–1081.

    Article  CAS  Google Scholar 

  26. Du, J. S.; Chen, P. C.; Meckes, B.; Kluender, E. J.; Xie, Z.; Dravid, V. P.; Mirkin, C. A. Windowless observation of evaporation-induced coarsening of Au-Pt nanoparticles in polymer nanoreactors. J. Am. Chem. Soc. 2018, 140, 7213–7221.

    Article  CAS  Google Scholar 

  27. Qin, L. D.; Park, S.; Huang, L.; Mirkin, C. A. On-wire lithography. Science 2005, 309, 113–115.

    Article  CAS  Google Scholar 

  28. Sanedrin, R. G.; Huang, L.; Jang, J. W.; Kakkassery, J.; Mirkin, C. A. Polyethylene glycol as a novel resist and sacrificial material for generating positive and negative nanostructures. Small 2008, 4, 920–924.

    Article  CAS  Google Scholar 

  29. Chai, J. N.; Huo, F. W.; Zheng, Z. J.; Giam, L. R.; Shim, W.; Mirkin, C. A. Scanning probe block copolymer lithography. Proc. Natl. Acad. Sci. USA 2010, 107, 20202–20206.

    Article  CAS  Google Scholar 

  30. Chen, P. C.; Liu, X. L.; Hedrick, J. L.; Xie, Z.; Wang, S. Z.; Lin, Q. Y.; Hersam, M. C.; Dravid, V. P.; Mirkin, C. A. Polyelemental nanoparticle libraries. Science 2016, 352, 1565–1569.

    Article  CAS  Google Scholar 

  31. Ali, F. M.; Kershi, R. M. Synthesis and characterization of La3+ ions incorporated (PVA/PVP) polymer composite films for optoelectronics devices. J. Mater. Sci. Mater. Electron. 2020, 31, 2557–2566.

    Article  CAS  Google Scholar 

  32. Kumar, B.; Kaur, G.; Rai, S. B. Sensitized green emission of terbium with dibenzoylmethane and 1,10-phenanthroline in polyvinyl alcohol and polyvinyl pyrrolidone blends. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2017, 187, 75–81.

    Article  CAS  Google Scholar 

  33. Chai, J. N.; Liao, X.; Giam, L. R.; Mirkin, C. A. Nanoreactors for studying single nanoparticle coarsening. J. Am. Chem. Soc. 2012, 134, 158–161.

    Article  CAS  Google Scholar 

  34. Xing, M. M.; Cao, W. H.; Zhong, H. Y.; Zhang, Y. H.; Luo, X. X.; Fu, Y.; Feng, W.; Pang, T.; Yang, X. F. Synthesis and upconversion luminescence properties of monodisperse Y2O3: Yb, Ho spherical particles. J. Alloys Compd. 2011, 509, 5725–5730.

    Article  CAS  Google Scholar 

  35. Eichelsdoerfer, D. J.; Liao, X.; Cabezas, M. D.; Morris, W.; Radha, B.; Brown, K. A.; Giam, L. R.; Braunschweig, A. B.; Mirkin, C. A. Large-area molecular patterning with polymer pen lithography. Nat. Protoc. 2013, 8, 2548–2560.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work reported here was supported by the Major Research Program Cultivation Project of National Science Foundation of China (No. 91956107) and the National Natural Science Foundation of China (Nos. 2201101389, 21871137, 62122028, and 11974123).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiuqiang Zhan or Ling Huang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Bao, S., Qiao, S. et al. Luminescent nanoparticle-arrays synthesized via polymer pen lithography. Nano Res. 16, 3125–3129 (2023). https://doi.org/10.1007/s12274-022-4968-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4968-0

Keywords

Navigation