Skip to main content
Log in

Templated synthesis of patterned gold nanoparticle assemblies for highly sensitive and reliable SERS substrates

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Formation of plasmonic structure in closely packed assemblies of metallic nanoparticles (NPs) is essential for various applications in sensing, renewable energy, authentication, catalysis, and metamaterials. Herein, a surface-enhanced Raman scattering (SERS) substrate is fabricated for trace detection with ultrahigh sensitivity and stability. The SERS substrate is constructed from a simple yet robust strategy through in situ growth patterned assemblies of Au NPs based on a polymer brush templated synthesis strategy. Benefiting from the dense and uniform distribution of Au NPs, the resulting Au plasmonic nanostructure demonstrates a very strong SERS effect, while the outer polymer brush could restrict the excessive growth of Au NPs and the patterned design could achieve uniform distribution of Au NPs. As results, an ultra-low limit of detection (LOD) of 10−15 M, which has never been successfully detected in other work, is determined for 4-acetamidothiophenol (4-AMTP) molecules and the Raman signals in the random region show good signal homogeneity with a low relative standard deviation (RSD) of 7.2%, indicating great sensitivity and reliability as a SERS substrate. The LOD values of such Au plasmonic nanostructures for methylene blue, thiram, and R6G molecules can also reach as low as 10−10 M, further indicating that the substrate has a wide range of applicability for SERS detection. With the help of finite difference time domain simulations (FDTD) calculation, the electric field distribution of the Au plasmonic nanostructures is simulated, which quantitatively matches the experimental observations. Moreover, the Au plasmonic nanostructures show good shelf stability for at least 10 months of storage in an ambient environment, indicating potentials for practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schlücker, S. Surface-enhanced Raman spectroscopy: Concepts and chemical applications. Angew. Chem., Int. Ed. 2014, 53, 4756–4795.

    Google Scholar 

  2. Albrecht, M. G.; Creighton, J. A. Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 1977, 99, 5215–5217.

    CAS  Google Scholar 

  3. Jeanmaire, D. L.; Van Duyne, R. P. Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. Interfacial Electrochem. 1977, 84, 1–20.

    CAS  Google Scholar 

  4. Langer, J.; Jimenez de Aberasturi, D.; Aizpurua, J.; Alvarez-Puebla, R. A.; Auguié, B.; Baumberg, J. J.; Bazan, G. C.; Bell, S. E. J.; Boisen, A.; Brolo, A. G. et al. Present and future of surface-enhanced Raman scattering. ACS Nano 2020, 14, 28–117.

    CAS  Google Scholar 

  5. Ko, H.; Singamaneni, S.; Tsukruk, V. V. Nanostructured surfaces and assemblies as SERS media. Small 2008, 4, 1576–1599.

    CAS  Google Scholar 

  6. Moskovits, M. Surface selection rules. J. Chem. Phys. 1982, 77, 4408–4416.

    CAS  Google Scholar 

  7. Philpott, M. R. Effect of surface plasmons on transitions in molecules. J. Chem. Phys. 1975, 62, 1812–1817.

    CAS  Google Scholar 

  8. Von Maltzahn, G.; Centrone, A.; Park, J. H.; Ramanathan, R.; Sailor, M. J.; Hatton, T. A.; Bhatia, S. N. SERS-coded gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating. Adv. Mater. 2009, 21, 3175–3180.

    CAS  Google Scholar 

  9. Pham, X. H.; Hahm, E.; Kim, T. H.; Kim, H. M.; Lee, S. H.; Lee, S. C.; Kang, H.; Lee, H. Y.; Jeong, D. H.; Choi, H. S. et al. Enzyme-amplified SERS immunoassay with Ag-Au bimetallic SERS hot spots. Nano Res. 2020, 73, 3338–3346.

    Google Scholar 

  10. Karthick Kannan, P.; Shankar, P.; Blackman, C.; Chung, C. H. Recent advances in 2D inorganic nanomaterials for SERS sensing. Adv. Mater. 2019, 31, 1803432.

    Google Scholar 

  11. Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne, R. P. Biosensing with plasmonic nanosensors. Nat. Mater. 2008, 7, 442–453.

    CAS  Google Scholar 

  12. Kruszewskh, S.; Skonieczny, J. Roughness effects in surface enhanced Raman scattering-evidence for electromagnetic and charge transfer enhancement mechanism. Acta Phys. Pol. A 1991, 80, 611–620.

    Google Scholar 

  13. Nie, S. M.; Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 1997, 275, 1102–1106.

    CAS  Google Scholar 

  14. Chen, G.; Gibson, K. J.; Liu, D.; Rees, H. C.; Lee, J. H.; Xia, W. W.; Lin, R. Q.; Xin, H. L.; Gang, O.; Weizmann, Y. Regioselective surface encoding of nanoparticles for programmable self-assembly. Nat. Mater. 2019, 18, 169–174.

    CAS  Google Scholar 

  15. Xu, H. X.; Bjerneld, E. J.; Käll, M.; Börjesson, L. Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys. Rev. Lett. 1999, 83, 4357–4360.

    CAS  Google Scholar 

  16. Constantino, C. J. L.; Lemma, T.; Antunes, P. A.; Aroca, R. Single-molecule detection using surface-enhanced resonance Raman scattering and langmuir-blodgett monolayers. Anal. Chem. 2001, 73, 3674–3678.

    CAS  Google Scholar 

  17. Moskovits, M. Persistent misconceptions regarding SERS. Phys. Chem. Chem. Phys. 2013, 75, 5301–5311.

    Google Scholar 

  18. Willets, K. A.; Van Duyne, R. P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 2007, 58, 267–297.

    CAS  Google Scholar 

  19. Yang, M.; Alvarez-Puebla, R.; Kim, H. S.; Aldeanueva-Potel, P.; Liz-Marzán, L. M.; Kotov, N. A. SERS-active gold lace nanoshells with built-in hotspots. Nano Lett. 2010, 10, 4013–4019.

    CAS  Google Scholar 

  20. Stewart, M. E.; Anderton, C. R.; Thompson, L. B.; Maria, J.; Gray, S. K.; Rogers, J. A.; Nuzzo, R. G. Nanostructured plasmonic sensors. Chem. Rev. 2008, 108, 494–521.

    CAS  Google Scholar 

  21. Fleischmann, M.; Hendra, P. J.; McQuillan, A. J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 1974, 26, 163–166.

    CAS  Google Scholar 

  22. Yao, X.; Jiang, S.; Luo, S. S.; Liu, B. W.; Huang, T. X.; Hu, S.; Zhu, J. F.; Wang, X.; Ren, B. Uniform periodic bowtie SERS substrate with narrow nanogaps obtained by monitored pulsed electrodeposition. ACS Appl. Mater. Interfaces 2020, 12, 36505–36512.

    CAS  Google Scholar 

  23. Pekdemir, S.; Torun, I.; Sakir, M.; Ruzi, M.; Rogers, J. A.; Onses, M. S. Chemical funneling of colloidal gold nanoparticles on printed arrays of end-grafted polymers for plasmonic applications. ACS Nano 2020, 14, 8276–8286.

    CAS  Google Scholar 

  24. Xie, L. P.; Zeng, H.; Zhu, J. X.; Zhang, Z. L.; Sun, H. B.; Xia, W.; Du, Y. N. State of the art in flexible SERS sensors toward label-free and onsite detection: From design to applications. Nano Res. 2022, 15, 4374–4394.

    Google Scholar 

  25. Kim, J.; Yoo, S.; Kim, J. M.; Choi, S.; Kim, J.; Park, S. J.; Park, D.; Nam, J. M.; Park, S. Synthesis and single-particle surface-enhanced Raman scattering study of plasmonic tripod nanoframes with Y-shaped hot-zones. Nano Lett. 2020, 28, 4362–4369.

    Google Scholar 

  26. Yoo, S.; Lee, J.; Kim, J.; Kim, J. M.; Haddadnezhad, M.; Lee, S.; Choi, S.; Park, D.; Nam, J. M.; Park, S. Silver double nanorings with circular hot zone. J. Am. Chem. Soc. 2020, 142, 12341–12348.

    CAS  Google Scholar 

  27. Fan, Z. X.; Huang, X.; Tan, C. L.; Zhang, H. Thin metal nanostructures: Synthesis, properties and applications. Chem. Sci. 2015, 6, 95–111.

    CAS  Google Scholar 

  28. Im, H.; Bantz, K. C.; Lee, S. H.; Johnson, T. W.; Haynes, C. L.; Oh, S. H. Self-assembled plasmonic nanoring cavity arrays for SERS and LSPR biosensing. Adv. Mater. 2013, 25, 2678–2685.

    CAS  Google Scholar 

  29. Kraus, T.; Malaquin, L.; Schmid, H.; Riess, W.; Spencer, N. D.; Wolf, H. Nanoparticle printing with single-particle resolution. Nat. Nanotechnol. 2007, 2, 570–576.

    CAS  Google Scholar 

  30. Hanske, C.; Müller, M. B.; Bieber, V.; Tebbe, M.; Jessl, S.; Wittemann, A.; Fery, A. The role of substrate wettability in nanoparticle transfer from wrinkled elastomers: Fundamentals and application toward hierarchical patterning. Langmuir 2012, 28, 16745–16750.

    CAS  Google Scholar 

  31. Volk, K.; Fitzgerald, J. P. S.; Ruckdeschel, P.; Retsch, M.; König, T. A. F.; Karg, M. Reversible tuning of visible wavelength surface lattice resonances in self-assembled hybrid monolayers. Adv. Opt. Mater. 2017, 5, 1600971.

    Google Scholar 

  32. Zengin, A.; Tamer, U.; Caykara, T. SERS detection of polyaromatic hydrocarbons on a β-cyclodextrin containing polymer brush. J. Raman Spectrosc. 2018, 49, 452–461.

    CAS  Google Scholar 

  33. Sheng, W. B.; Li, W.; Tan, D. W.; Zhang, P. P.; Zhang, E.; Sheremet, E.; Schmidt, B. V. K. J.; Feng, X. L.; Rodriguez, R. D.; Jordan, R. et al. Polymer brushes on graphitic carbon nitride for patterning and as a SERS active sensing layer via incorporated nanoparticles. ACS Appl. Mater. Interfaces 2020, 12, 9797–9805.

    CAS  Google Scholar 

  34. Liu, P. J.; Peng, J. P.; Chen, Y. T.; Liu, M.; Tang, W.; Guo, Z. H.; Yue, K. A general and robust strategy for in-situ templated synthesis of patterned inorganic nanoparticle assemblies. Giant 2021, 8, 100076.

    CAS  Google Scholar 

  35. Narupai, B.; Page, Z. A.; Treat, N. J.; McGrath, A. J.; Pester, C. W.; Discekici, E. H.; Dolinski, N. D.; Meyers, G. F.; de Alaniz, J. R.; Hawker, C. J. Simultaneous preparation of multiple polymer brushes under ambient conditions using microliter volumes. Angew. Chem., Int. Ed. 2018, 57, 13433–13438.

    CAS  Google Scholar 

  36. Treat, N. J.; Sprafke, H.; Kramer, J. W.; Clark, P. G.; Barton, B. E.; Read de Alaniz, J.; Fors, B. P.; Hawker, C. J. Metal-free atom transfer radical polymerization. J. Am. Chem. Soc. 2014, 136, 16096–16101.

    CAS  Google Scholar 

  37. Ding, S. Y.; Yi, J.; Li, J. F.; Ren, B.; Wu, D. Y.; Panneerselvam, R.; Tian, Z. Q. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat. Rev. Mater. 2016, 7, 16021.

    Google Scholar 

  38. Discekici, E. H.; Anastasaki, A.; Read de Alaniz, J.; Hawker, C. J. Evolution and future directions of metal-free atom transfer radical polymerization. Macromolecules 2018, 51, 7421–7434.

    CAS  Google Scholar 

  39. Paripovic, D.; Klok, H. A. Polymer brush guided formation of thin gold and palladium/gold bimetallic films. ACS Appl. Mater. Interfaces 2011, 3, 910–917.

    CAS  Google Scholar 

  40. He, Y. J.; Yoon, Y. J.; Harn, Y. W.; Biesold-McGee, G. V.; Liang, S.; Lin, C. H.; Tsukruk, V. V.; Thadhani, N.; Kang, Z. T.; Lin, Z. Q. Unconventional route to dual-shelled organolead halide perovskite nanocrystals with controlled dimensions, surface chemistry, and stabilities. Sci. Adv. 2019, 5, eaax4424.

    CAS  Google Scholar 

  41. Pang, S.; Yang, T. X.; He, L. L. Review of surface enhanced Raman spectroscopic (SERS) detection of synthetic chemical pesticides. Trends Analyt. Chem. 2016, 85, 73–82.

    CAS  Google Scholar 

  42. Pang, X. C.; Zhao, L.; Han, W.; Xin, X. K.; Lin, Z. Q. A general and robust strategy for the synthesis of nearly monodisperse colloidal nanocrystals. Nat. Nanotechnol. 2013, 5, 426–431.

    Google Scholar 

  43. Matyjaszewski, K.; Xia, J. H. Atom transfer radical polymerization. Chem. Rev. 2001, 101, 2921–2990.

    CAS  Google Scholar 

  44. Kleinman, S. L.; Frontiera, R. R.; Henry, A. I.; Dieringer, J. A.; Van Duyne, R. P. Creating, characterizing, and controlling chemistry with SERS hot spots. Phys. Chem. Chem. Phys. 2013, 15, 21–36.

    CAS  Google Scholar 

  45. Le, F.; Brandl, D. W.; Urzhumov, Y. A.; Wang, H.; Kundu, J.; Halas, N. J.; Aizpurua, J.; Nordlander, P. Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption. ACS Nano 2008, 2, 707–718.

    CAS  Google Scholar 

  46. Jung, K.; Hahn, J.; In, S.; Bae, Y.; Lee, H.; Pikhitsa, P. V.; Ahn, K.; Ha, K.; Lee, J. K.; Park, N. et al. Hotspots: Hotspot-engineered 3D multipetal flower assemblies for surface-enhanced Raman spectroscopy (Adv. Mater. 34/2014). Adv. Mater. 2014, 26, 5923.

    CAS  Google Scholar 

  47. Dick, S.; Konrad, M. P.; Lee, W. W. Y.; McCabe, H.; McCracken, J. N.; Rahman, T. M. D.; Stewart, A.; Xu, Y. K.; Bell, S. E. J. Surface-enhanced Raman spectroscopy as a probe of the surface chemistry of nanostructured materials. Adv. Mater. 2016, 25, 5705–5711.

    Google Scholar 

  48. Zhang, Y. L.; Li, X. K.; Xue, B.; Kong, X. G.; Liu, X. M.; Tu, L. P.; Chang, Y. L. A facile and general route to synthesize silica-coated SERS tags with the enhanced signal intensity. Sci. Rep. 2015, 5, 14934.

    CAS  Google Scholar 

  49. Xie, J.; Li, L. Y.; Khan, I. M.; Wang, Z. P.; Ma, X. Y. Flexible paper-based SERS substrate strategy for rapid detection of methyl parathion on the surface of fruit. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 231, 118104.

    CAS  Google Scholar 

  50. Orendorff, C. J.; Gole, A.; Sau, T. K.; Murphy, C. J. Surface-enhanced Raman spectroscopy of self-assembled monolayers: Sandwich architecture and nanoparticle shape dependence. Anal. Chem. 2005, 77, 3261–3266.

    CAS  Google Scholar 

  51. Markel, V. A.; Shalaev, V. M.; Stechel, E. B.; Kim, W.; Armstrong, R. L. Small-particle composites. I. Linear optical properties. Phys. Rev. B 1996, 53, 2425–2436.

    CAS  Google Scholar 

  52. Poliakov, E. Y.; Shalaev, V. M.; Markel, V. A.; Botet, R. Enhanced Raman scattering from self-affine thin films. Opt. Lett. 1996, 21, 1628–1630.

    CAS  Google Scholar 

  53. Jung, L. S.; Campbell, C. T. Sticking probabilities in adsorption of alkanethiols from liquid ethanol solution onto gold. J. Phys. Chem. B 2000, 104, 11168–11178.

    CAS  Google Scholar 

  54. Somorjai, G. A.; Mujumdar, A. S. Introduction to surface chemistry and catalysis. Drying Technol. 1995, 13, 507–508.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21905097, 21805091, 21774038, and 91856128), the China Postdoctoral Science Foundation (No. L1190440), Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices (No. 2019B121203003), the Pearl River Talents Scheme (No. 2016ZT06C322), and State Key Laboratory of Bio-Fibers and Eco-Textiles (Qingdao University, No. K2019-02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanhui Liu or Kan Yue.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, J., Liu, P., Chen, Y. et al. Templated synthesis of patterned gold nanoparticle assemblies for highly sensitive and reliable SERS substrates. Nano Res. 16, 5056–5064 (2023). https://doi.org/10.1007/s12274-022-5064-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5064-1

Keywords

Navigation