Skip to main content
Log in

Matryoshka-caged gold nanorods: Synthesis, plasmonic properties, and catalytic activity

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Matryoshka-caged gold nanorods (mCGNRs) were successfully synthesized by alternating between a seed-mediated silver-coating method and galvanic replacement reactions (GRRs). As the number of matryoshka layers of the mCGNRs increased, the plasmon resonance peak broadened and was red-shifted, and the catalytic activity towards the reduction of 4-nitrophenol (4-NTP) increased. When mCGNRs with 6 layers were used as nanocatalysts in the reduction of 4-nitrophenol, the reaction rate coefficient was 5.2- and 3.7-times higher than that of the gold-nanorod- and caged-gold-nanorod-catalyzed reductions of 4-nitrophenol, respectively. In addition, the surface-plasmon-resonance-based absorption of light enhanced the catalytic performance of the mCGNRs. With the support of a polyurethane foam, the mCGNRs synthesized in this study can be applied as recyclable heterogeneous catalysts for the reduction of 4-nitrophenol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Halas, N. J.; Lal, S.; Chang, W.-S.; Link, S.; Nordlander, P. Plasmons in strongly coupled metallic nanostructures. Chem. Rev. 2011, 111, 3913–3961.

    Article  Google Scholar 

  2. Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne, R. P. Biosensing with plasmonic nanosensors. Nat. Mater. 2008, 7, 442–453.

    Article  Google Scholar 

  3. Rycenga, M.; Cobley, C. M.; Zeng, J.; Li, W. Y.; Moran, C. H.; Zhang, Q.; Qin, D.; Xia, Y. N. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 2011, 111, 3669–3712.

    Article  Google Scholar 

  4. Ye, X. C.; Jin, L. H.; Caglayan, H.; Chen, J.; Xing, G. Z.; Zheng, C.; Doan-Nguyen, V.; Kang, Y. J.; Engheta, N.; Kagan, C. R. et al. Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives. ACS Nano 2012, 6, 2804–2817.

    Article  Google Scholar 

  5. Reddy, N. K.; Pérez-Juste, J.; Pastoriza-Santos, I.; Lang, P. R.; Dhont, J. K. G.; Liz-Marzán, L. M.; Vermant, J. Flow dichroism as a reliable method to measure the hydrodynamic aspect ratio of gold nanoparticles. ACS Nano 2011, 5, 4935–4944.

    Article  Google Scholar 

  6. Lohse, S. E.; Eller, J. R.; Sivapalan, S. T.; Plews, M. R.; Murphy, C. J. A simple millifluidic benchtop reactor system for the high-throughput synthesis and functionalization of gold nanoparticles with different sizes and shapes. ACS Nano 2013, 7, 4135–4150.

    Article  Google Scholar 

  7. Tan, S. J.; Campolongo, M. J.; Luo, D.; Cheng, W. L. Building plasmonic nanostructures with DNA. Nat. Nano 2011, 6, 268–276.

    Article  Google Scholar 

  8. Wang, J. F.; Gong, J. X.; Xiong, Y. S.; Yang, J. D.; Gao, Y.; Liu, Y. L.; Lu, X. Q.; Tang, Z. Y. Shape-dependent electrocatalytic activity of monodispersed gold nanocrystals toward glucose oxidation. Chem. Commun. 2011, 47, 6894–6896.

    Article  Google Scholar 

  9. Tang, Y.; Cheng, W. L. Nanoparticle-modified electrode with size- and shape-dependent electrocatalytic activities. Langmuir 2013, 29, 3125–3132.

    Article  Google Scholar 

  10. Zhang, Q.; Guo, X.; Liang, Z. X.; Zeng, J. H.; Yang, J.; Liao, S. J. Hybrid PdAg alloy–Au nanorods: Controlled growth, optical properties and electrochemical catalysis. Nano Res. 2013, 6, 571–580.

    Article  Google Scholar 

  11. Fu, G. T.; Liu, Z. Y.; Chen, Y.; Lin, J.; Tang, Y. W.; Lu, T. H. Synthesis and electrocatalytic activity of Au@Pd core–shell nanothorns for the oxygen reduction reaction. Nano Res. 2014, 7, 1205–1214.

    Article  Google Scholar 

  12. Wang, C. L.; Astruc, D. Nanogold plasmonic photocatalysis for organic synthesis and clean energy conversion. Chem. Soc. Rev. 2014, 43, 7188–7216.

    Article  Google Scholar 

  13. Zhou, W.; Li, T.; Wang, J. Q.; Qu, Y.; Pan, K.; Xie, Y. H.; Tian, G. H.; Wang, L.; Ren, Z. Y.; Jiang, B. J. et al. Composites of small Ag clusters confined in the channels of well-ordered mesoporous anatase TiO2 and their excellent solar-light-driven photocatalytic performance. Nano Res. 2014, 7, 731–742.

    Article  Google Scholar 

  14. Jiang, R. B.; Li, B. X.; Fang, C. H.; Wang, J. F. Metal/semiconductor hybrid nanostructures for plasmon-enhanced applications. Adv. Mater. 2014, 26, 5274–5309.

    Article  Google Scholar 

  15. Thompson, D. T. Using gold nanoparticles for catalysis. Nano Today 2007, 2, 40–43.

    Article  Google Scholar 

  16. Song, M.; Park, J. H.; Kim, C. S.; Kim, D.-H.; Kang, Y.-C.; Jin, S.-H.; Jin, W.-Y.; Kang, J.-W. Highly flexible and transparent conducting silver nanowire/ZnO composite film for organic solar cells. Nano Res. 2014, 7, 1370–1379.

    Article  Google Scholar 

  17. Hutchings, G. J. Catalysis by gold. Catal. Today 2005, 100, 55–61.

    Article  Google Scholar 

  18. Wittstock, A.; Bäumer, M. Catalysis by unsupported skeletal gold catalysts. Acc. Chem. Res. 2014, 47, 731–739.

    Article  Google Scholar 

  19. Daniel, M.-C.; Astruc, D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 2004, 104, 293–346.

    Article  Google Scholar 

  20. Min, B. K.; Friend, C. M. Heterogeneous gold-based catalysis for green chemistry: Low-temperature CO oxidation and propene oxidation. Chem. Rev. 2007, 107, 2709–2724.

    Article  Google Scholar 

  21. Hashmi, A. S. K. Gold-catalyzed organic reactions. Chem. Rev. 2007, 107, 3180–3211.

    Article  Google Scholar 

  22. Zeng, J.; Zhang, Q.; Chen, J. Y.; Xia, Y. N. A comparison study of the catalytic properties of Au-based nanocages, nanoboxes, and nanoparticles. Nano Lett. 2009, 10, 30–35.

    Article  Google Scholar 

  23. Mahmoud, M. A.; El-Sayed, M. A. Time dependence and signs of the shift of the surface plasmon resonance frequency in nanocages elucidate the nanocatalysis mechanism in hollow nanoparticles. Nano Lett. 2011, 11, 946–953.

    Article  Google Scholar 

  24. Gu, H.; Wang, J. N.; Ji, Y. C.; Wang, Z. Q.; Chen, W.; Xue, G. Facile and controllable fabrication of gold nanoparticlesimmobilized hollow silica particles and their high catalytic activity. J. Mater. Chem. A 2013, 1, 12471–12477.

    Article  Google Scholar 

  25. Wang, W.; Pang, Y. J.; Yan, J.; Wang, G. B.; Suo, H.; Zhao, C.; Xing, S. X. Facile synthesis of hollow urchin-like gold nanoparticles and their catalytic activity. Gold Bull. 2012, 45, 91–98.

    Article  Google Scholar 

  26. Mahmoud, M. A.; El-Sayed, M. A. Metallic double shell hollow nanocages: The challenges of their synthetic techniques. Langmuir 2012, 28, 4051–4059.

    Article  Google Scholar 

  27. Hong, S.; Acapulco, J. A. I.; Jang, H. Y.; Park, S. Au nanodisk-core multishell nanoparticles: Synthetic method for controlling number of shells and intershell distance. Chem. Mater. 2014, 26, 3618–3623.

    Article  Google Scholar 

  28. Xiong, W.; Sikdar, D.; Walsh, M.; Si, K. J.; Tang, Y.; Chen, Y.; Mazid, R.; Weyland, M.; Rukhlenko, I. D.; Etheridge, J. et al. Single-crystal caged gold nanorods with tunable broadband plasmon resonances. Chem. Commun. 2013, 49, 9630–9632.

    Article  Google Scholar 

  29. Lee, J.; Park, J. C.; Song, H. A nanoreactor framework of a Au@SiO2 yolk/shell structure for catalytic reduction of p-nitrophenol. Adv. Mater. 2008, 20, 1523–1528.

    Article  Google Scholar 

  30. Xiong, W.; Mazid, R.; Yap, L. W.; Li, X. Y.; Cheng, W. L. Plasmonic caged gold nanorods for near-infrared light controlled drug delivery. Nanoscale 2014, 6, 14388–14393.

    Article  Google Scholar 

  31. Sikdar, D.; Rukhlenko, I. D.; Cheng, W. L.; Premaratne, M. Tunable broadband optical responses of substrate-supported metal/dielectric/metal nanospheres. Plasmonics 2014, 9, 659–672.

    Article  Google Scholar 

  32. Sikdar, D.; Rukhlenko, I. D.; Cheng, W. L.; Premaratne, M. Effect of number density on optimal design of gold nanoshells for plasmonic photothermal therapy. Biomed. Opt. Express 2013, 4, 15–31.

    Article  Google Scholar 

  33. Hu, Y. X.; Liu, Y. Z.; Li, Z.; Sun, Y. G. Highly asymmetric, interfaced dimers made of Au nanoparticles and bimetallic nanoshells: Synthesis and photo-enhanced catalysis. Adv. Funct. Mater. 2014, 24, 2828–2836.

    Article  Google Scholar 

  34. Wang, J. H.; Yuan, Z. L.; Nie, R. F.; Hou, Z. Y.; Zheng, X. M. Hydrogenation of nitrobenzene to aniline over silica gel supported nickel catalysts. Ind. Eng. Chem. Res. 2010, 49, 4664–4669.

    Article  Google Scholar 

  35. Jain, P.; Pradeep, T. Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnol. Bioeng. 2005, 90, 59–63.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenlong Cheng.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, W., Sikdar, D., Yap, L.W. et al. Matryoshka-caged gold nanorods: Synthesis, plasmonic properties, and catalytic activity. Nano Res. 9, 415–423 (2016). https://doi.org/10.1007/s12274-015-0922-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0922-8

Keywords

Navigation