Skip to main content
Log in

Synthesis and electrocatalytic activity of Au@Pd core-shell nanothorns for the oxygen reduction reaction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Bimetallic core-shell nanostructures with porous surfaces have drawn considerable attention due to their promising applications in various fields, including catalysis and electronics. In this work, Au@Pd core-shell nanothorns (CSNTs) with rough and porous surfaces were synthesized for the first time through a facile co-chemical reduction method in the presence of polyallylamine hydrochloride (PAH) and ethylene glycol (EG) at room temperature. The size, morphology, and composition of Au@Pd CSNTs were investigated by transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive spectroscopy (EDX), EDX mapping, and X-ray photoelectron spectroscopy (XPS). The electrochemical properties of as-synthesized Au@Pd CSNTs were also studied by various electrochemical techniques. Au@Pd CSNTs exhibited remarkably high electrocatalytic activity and durability for the oxygen reduction reaction (ORR) in the alkaline media, owing to the unique porous structure and the synergistic effect between the Au core and Pd shell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lim, B.; Jiang, M. J.; Camargo, P. H. C.; Cho, E. C.; Tao, J.; Lu, X. M.; Zhu, Y. M.; Xia, Y. N. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 2009, 324, 1302–1305.

    Article  Google Scholar 

  2. Peng, Z. M.; Yang, H. Synthesis and oxygen reduction electrocatalytic property of Pt-on-Pd bimetallic heteronanostructures. J. Am. Chem. Soc. 2009, 131, 7542–7543.

    Article  Google Scholar 

  3. Peng, Z. M.; Yang, H. PtAu bimetallic heteronanostructures made by post-synthesis modification of Pt-on-Au nanoparticles. Nano Res. 2009, 2, 406–415.

    Article  Google Scholar 

  4. Hong, J. W.; Kim, M.; Kim, Y.; Han, S. W. Trisoctahedral Au-Pd alloy nanocrystals with high-index facets and their excellent catalytic performance. Chem. Eur. J. 2012, 18, 16626–16630.

    Article  Google Scholar 

  5. Lee, Y. W.; Kim, M.; Kim, Y.; Kang, S. W.; Lee, J.-H.; Han, S. W. Synthesis and electrocatalytic activity of Au-Pd alloy nanodendrites for ethanol oxidation. J. Phys. Chem. C 2010, 114, 7689–7693.

    Article  Google Scholar 

  6. Lim, B.; Jiang, M. J.; Yu, T.; Camargo, P. H. C.; Xia, Y. N. Nucleation and growth mechanisms for Pd-Pt bimetallic nanodendrites and their electrocatalytic properties. Nano Res. 2010, 3, 69–80.

    Article  Google Scholar 

  7. Zhang, L.; Zhang, J. W.; Kuang, Q.; Xie, S. F.; Jiang, Z. Y.; Xie, Z. X.; Zheng, L. S. Cu2+-assisted synthesis of hexoctahedral Au-Pd alloy nanocrystals with high-index facets. J. Am. Chem. Soc. 2011, 133, 17114–17117.

    Article  Google Scholar 

  8. Wang, W. J.; Zhang, J.; Yang, S. C.; Ding, B. J.; Song, X. P. Au@Pd core-shell nanobricks with concave structures and their catalysis of ethanol oxidation. ChemSusChem 2013, 6, 1945–1951.

    Article  Google Scholar 

  9. Balcha, T.; Strobl, J. R.; Fowler, C.; Dash, P.; Scott, R. W. J. Selective aerobic oxidation of crotyl alcohol using AuPd core-shell nanoparticles. ACS Catal. 2011, 1, 425–436.

    Article  Google Scholar 

  10. Lim, B.; Jiang, M. J.; Yu, T.; Camargo, P. H. C.; Xia, Y. N. Nucleation and growth mechanisms for Pd-Pt bimetallic nanodendrites and their electrocatalytic properties. Nano Res. 2010, 3, 69–80.

    Article  Google Scholar 

  11. Li, W. Z.; Kuai, L.; Qin, Q.; Geng, B. Ag-Au bimetallic nanostructures: Co-reduction synthesis and their component-dependent performance for enzyme-free H2O2 sensing. J. Mater. Chem. A 2013, 1, 7111–7117.

    Article  Google Scholar 

  12. Chen, L.; Kuai, L.; Yu, X.; Li, W.; Geng, B. Advanced catalytic performance of Au-Pt double-walled nanotubes and their fabrication through galvanic replacement reaction. Chem. Eur. J. 2013, 19, 11753–11758.

    Article  Google Scholar 

  13. Kim, D. Y.; Kang, S. W.; Choi, K. W.; Choi, S. W.; Han, S. W.; Im, S. H.; Park, O. O. Au@Pd nanostructures with tunable morphologies and sizes and their enhanced electrocatalytic activity. CrystEngComm 2013, 15, 7113–7120.

    Article  Google Scholar 

  14. Xu, J. G.; Wilson, A. R.; Rathmell, A. R.; Howe, J.; Chi, M. F.; Wiley, B. J. Synthesis and catalytic properties of Au-Pd nanoflowers. ACS Nano 2011, 5, 6119–6127.

    Article  Google Scholar 

  15. Kim, D. Y.; Choi, K. W.; Zhong, X.-L.; Li, Z.-Y.; Im, S. H.; Park, O. O. Au@Pd core-shell nanocubes with finely-controlled sizes. CrystEngComm 2013, 15, 3385–3391.

    Article  Google Scholar 

  16. Lee, Y. W.; Kim, M.; Kim, Z. H.; Han, S. W. One-step synthesis of Au@Pd core-shell nanooctahedron. J. Am. Chem. Soc. 2009, 131, 17036–17037.

    Article  Google Scholar 

  17. Li, J.; Zheng, Y. Q.; Zeng, J.; Xia, Y. N. Controlling the size and morphology of Au@Pd core-shell nanocrystals by manipulating the kinetics of seeded growth. Chem. Eur. J. 2012, 18, 8150–8156.

    Article  Google Scholar 

  18. Song, H. M.; Anjum, D. H.; Sougrat, R.; Hedhili, M. N.; Khashab, N. M. Hollow Au@Pd and Au@Pt core-shell nanoparticles as electrocatalysts for ethanol oxidation reactions. J. Mater. Chem. 2012, 22, 25003–25010.

    Article  Google Scholar 

  19. Kuai, L.; Geng, B. Y.; Wang, S. Z.; Sang, Y. A general and high-yield galvanic displacement approach to Au-M (M = Au, Pd, and Pt) core-shell nanostructures with porous shells and enhanced electrocatalytic performances. Chem. Eur. J. 2012, 18, 9423–9429.

    Article  Google Scholar 

  20. Fu, G. T.; Wu, K.; Lin, J.; Tang, Y.; Chen, Y.; Zhou, Y. M.; Lu, T. H. One-pot water-based synthesis of Pt-Pd alloy nanoflowers and their superior electrocatalytic activity for the oxygen reduction reaction and remarkable methanol-tolerant ability in acid media. J. Phys. Chem. C 2013, 117, 9826–9834.

    Article  Google Scholar 

  21. Fu, G.; Wu, K.; Jiang, X.; Tao, L.; Chen, Y.; Lin, J.; Zhou, Y.; Wei, S.; Tang, Y.; Lu, T.; et al. Polyallylamine-directed green synthesis of platinum nanocubes. Shape and electronic effect codependent enhanced electrocatalytic activity. Phys. Chem. Chem. Phys. 2013, 15, 3793–3802.

    Article  Google Scholar 

  22. Garsany, Y.; Baturina, O. A.; Swider-Lyons, K. E.; Kocha, S. S. Experimental methods for quantifying the activity of platinum electrocatalysts for the oxygen reduction reaction. Anal. Chem. 2010, 82, 6321–6328.

    Article  Google Scholar 

  23. Awaludin, Z.; Suzuki, M.; Masud, J.; Okajima, T.; Ohsaka, T. Enhanced electrocatalysis of oxygen reduction on Pt/TaOx/GC. J. Phys. Chem. C 2011, 115, 25557–25567.

    Article  Google Scholar 

  24. Stamenković, V.; Schmidt, T. J.; Ross, P. N.; Marković, N. M. Surface composition effects in electrocatalysis: Kinetics of oxygen reduction on well-defined Pt3Ni and Pt3Co alloy surfaces. J. Phys. Chem. B 2002, 106, 11970–11979.

    Article  Google Scholar 

  25. Takai, A.; Ataee-Esfahani, H.; Doi, Y.; Fuziwara, M.; Yamauchi, Y.; Kuroda, K. Pt nanoworms: Creation of a bumpy surface on one-dimensional (1D) Pt nanowires with the assistance of surfactants embedded in mesochannels. Chem. Commun. 2011, 47, 7701–7703.

    Article  Google Scholar 

  26. Lim, B.; Lu, X.; Jiang, M.; Camargo, P. H.; Cho, E. C.; Lee, E. P.; Xia, Y. Facile synthesis of highly faceted multioctahedral Pt nanocrystals through controlled overgrowth. Nano Lett. 2008, 8, 4043–4047.

    Article  Google Scholar 

  27. Yu, T.; Kim, D. Y.; Zhang, H.; Xia, Y. N. Platinum concave nanocubes with high-index facets and their enhanced activity for oxygen reduction reaction. Angew. Chem. Int. Ed. 2011, 50, 2773–2777.

    Article  Google Scholar 

  28. Zhou, W. J.; Lee, J. Y. Highly active core-shell Au@Pd catalyst for formic acid electrooxidation. Electrochem. Commun. 2007, 9, 1725–1729.

    Article  Google Scholar 

  29. Tan, Q.; Du, C. Y.; Yin, G. P.; Zuo, P. J.; Cheng, X. Q.; Chen, M. Highly efficient and stable nonplatinum anode catalyst with Au@Pd core-shell nanostructures for methanol electrooxidation. J. Catal. 2012, 295, 217–222.

    Article  Google Scholar 

  30. Fu, G. T.; Jiang, X.; Ding, L. F.; Tao, L.; Chen, Y.; Tang, Y. W.; Zhou, Y. M.; Wei, S. H.; Lin, J.; Lu, T. H. Green synthesis and catalytic properties of polyallylamine functionalized tetrahedral palladium nanocrystals. Appl. Catal. B: Environ. 2013, 138–139, 167–174.

    Article  Google Scholar 

  31. Fu, G. T.; Han, W.; Yao, L. F.; Lin, J.; Wei, S. H.; Chen, Y.; Tang, Y. W.; Zhou, Y.; Lu, T. H.; Xia, X. H. One-step synthesis and catalytic properties of porous palladium nanospheres. J. Mater. Chem. 2012, 22, 17604–17611.

    Article  Google Scholar 

  32. Fu, G. T.; Jiang, X.; Tao, L.; Chen, Y.; Lin, J.; Zhou, Y. M.; Tang, Y. W.; Lu, T. H. Polyallylamine functionalized palladium icosahedra: One-pot water-based synthesis and their superior electrocatalytic activity and ethanol tolerant ability in alkaline media. Langmuir 2013, 29, 4413–4420.

    Article  Google Scholar 

  33. Jeong, G. H.; Choi, D.; Kang, M.; Shin, J.; Kang, J. G.; Kim, S. W. One-pot synthesis of Au@ Pd/graphene nanostructures: Electrocatalytic ethanol oxidation for direct alcohol fuel cells (DAFCs). RSC Adv. 2013, 3, 8864–8870.

    Article  Google Scholar 

  34. Zhang, L.-F.; Zhang, C.-Y. Dodecahedral Au@Pd nanocrystals with high-index facets and excellent electrocatalytic activity and highly efficient surface-enhanced Raman scattering enhancement. Nanoscale 2013, 5, 6074–6080.

    Article  Google Scholar 

  35. Lee, Y. W.; Kim, N. H.; Lee, K. Y.; Kwon, K.; Kim, M.; Han, S. W. Synthesis and characterization of flower-shaped porous Au-Pd alloy nanoparticles. J. Phys. Chem. C 2008, 112, 6717–6722.

    Article  Google Scholar 

  36. Li, Z. H.; Li, R.; Mu, T. C.; Luan, Y. X. Ionic liquid assisted synthesis of Au-Pd bimetallic particles with enhanced electrocatalytic activity. Chem. Eur. J. 2013, 19, 6005–6013.

    Article  Google Scholar 

  37. Heo, J.; Kim, D.-S.; Kim, Z. H.; Lee, Y. W.; Kim, D.; Kim, M.; Kwon, K.; Park, H. J.; Yun, W. S.; Han, S. W. Controlled synthesis and characterization of the enhanced local field of octahedral Au nanocrystals. Chem. Commun. 2008, 6120–6122.

    Google Scholar 

  38. Tian, Z.-Q.; Ren, B.; Li, J.-F.; Yang, Z.-L. Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy. Chem. Commun. 2007, 3514–3534.

    Google Scholar 

  39. Peng, Z. M.; Yang, H. Designer platinum nanoparticles: Control of shape, composition in alloy, nanostructure and electrocatalytic property. Nano Today 2009, 4, 143–164.

    Article  Google Scholar 

  40. Zhang, J.; Mo, Y.; Vukmirovic, M.; B. Klie, R.; Sasaki, K.; Adzic, R. R. Platinum monolayer electrocatalysts for O2 reduction: Pt monolayer on Pd (111) and on carbon-supported Pd nanoparticles. J. Phys. Chem. B 2004, 108, 10955–10964.

    Article  Google Scholar 

  41. Sun, S. H.; Zhang, G. X.; Geng, D. S.; Chen, Y. G.; Li, R. Y.; Cai, M.; Sun, X. L. A highly durable platinum nanocatalyst for proton exchange membrane fuel cells: Multiarmed starlike nanowire single crystal. Angew. Chem. Int. Ed. 2011, 50, 422–426.

    Article  Google Scholar 

  42. Xia, B. Y.; Ng, W. T.; Wu, H. B.; Wang, X.; Lou, X. W. Self-supported interconnected Pt nanoassemblies as highly stable electrocatalysts for low-temperature fuel cells. Angew. Chem. Int. Ed. 2012, 51, 7213–7216.

    Article  Google Scholar 

  43. Kuai, L.; Yu, X.; Wang, S. Z.; Sang, Y.; Geng, B. Y. Au-Pd alloy and core-shell nanostructures: One-pot coreduction preparation, formation mechanism, and electrochemical properties. Langmuir 2012, 28, 7168–7173.

    Article  Google Scholar 

  44. Lee, C.-L.; Chao, Y.-J.; Chen, C.-H.; Chiou, H.-P.; Syu, C. C. Graphite-nanofiber-supported porous Pt-Ag nanosponges: Synthesis and oxygen reduction electrocatalysis. Int. J. Hydrogen Energ. 2011, 36, 15045–15051.

    Article  Google Scholar 

  45. Lima, F. H. B.; de Castro, J. F. R.; Ticianelli, E. A. Silver-cobalt bimetallic particles for oxygen reduction in alkaline media. J. Power Sources 2006, 161, 806–812.

    Article  Google Scholar 

  46. Zhang, G. J.; Zhang, L.; Shen, L. P.; Chen, Y.; Zhou, Y. M.; Tang, Y. W.; Lu, T. H. Synthesis and electrocatalytic properties of palladium network nanostructures. ChemPlusChem 2012, 77, 936–940.

    Article  Google Scholar 

  47. Tan, Y. M.; Fan, J. M.; Chen, G. X.; Zheng, N. F.; Xie, Q. J. Au/Pt and Au/Pt3Ni nanowires as self-supported electrocatalysts with high activity and durability for oxygen reduction. Chem. Commun. 2011, 47, 11624–11626.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Chen or Yawen Tang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, G., Liu, Z., Chen, Y. et al. Synthesis and electrocatalytic activity of Au@Pd core-shell nanothorns for the oxygen reduction reaction. Nano Res. 7, 1205–1214 (2014). https://doi.org/10.1007/s12274-014-0483-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0483-2

Keywords

Navigation