Skip to main content
Log in

Tunable Broadband Optical Responses of Substrate-Supported Metal/Dielectric/Metal Nanospheres

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Using the image charge theory and finite element methods, we present the first comprehensive study on the optical properties of substrate-supported, three-layer, metal/dielectric/metal nanospheres. By adopting dipolar and quadrupolar approximations of the quasistatic image charge theory, we derive analytical expressions for the polarization-dependent polarizabilities of a three-layer nanosphere near a substrate and use them to find the nanosphere’s plasmon resonance wavelengths as functions of the geometric and material parameters of the nanosphere–substrate system. By calculating the resonance wavelength of substrate-supported gold/silica/gold nanosphere over a sufficiently large domain of the nanosphere’s dimensions, we show that this wavelength can be tuned from visible to infrared regions by altering only the size of the nanosphere’s core. We also show that the resonance position as well as the enhancement and confinement of the near-field can be dynamically tuned over broad ranges by changing the polarization of the excitation light. Of significance for the applicability of our results in practice is that we employ size-dependent permittivity of gold, which allows experimentalists to readily produce these substrate-supported nanospheres with desired optical responses. Upon comparing our analytical results with the results of numerical simulations, we reveal the range of the nanospheres’ outer radii within which the dipolar and quadrupolar approximations adequately describe the nanosphere–substrate interaction. Since majority of the optical functions are realized with light polarized parallel to the substrate, our results allow one to readily engineer the broadband optical responses of substrate-supported metal/dielectric/metal nanospheres for applications in resonance-enhanced sensing, in light harvesting, and in biomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin

    Book  Google Scholar 

  2. Khan AD, Miano G (2013) Higher order tunable Fano resonances in multilayer nanocones. Plasmonics 8(2):1023–1034

    Article  CAS  Google Scholar 

  3. Handapangoda D, Rukhlenko ID, Premaratne M (2012) Optimizing the design of planar heterostructures for plasmonic waveguiding. J Opt Soc Am B 29(4):553–558

    Article  CAS  Google Scholar 

  4. Yong KT, Swihart MT, Ding H, Prasad PN (2009) Preparation of gold nanoparticles and their applications in anisotropic nanoparticle synthesis and bioimaging. Plasmonics 4(2):79–93

    Article  CAS  Google Scholar 

  5. Erickson TA, Tunnell JW (2009) Gold nanoshells in biomedical applications. In: Kumar CSSR (ed) Nanomaterials for the life sciences, mixed metal nanomaterials, vol 3. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 1–44

    Google Scholar 

  6. Udagedara IB, Rukhlenko ID, Premaratne M (2011) Surface plasmon-polariton propagation in piecewise linear chains of composite nanospheres: the role of optical gain and chain layout. Opt Express 19(21):19973–19986

    Article  Google Scholar 

  7. Acevedo R, Lombardini R, Halas NJ, Johnson BR (2009) Plasmonic enhancement of Raman optical activity in molecules near metal nanoshells. J Phys Chem A 113(47):13173–13183

    Article  CAS  Google Scholar 

  8. Pannipitiya A, Rukhlenko ID, Premaratne M (2011) Analytical theory of optical bistability in plasmonic nanoresonators. J Opt Soc Am B 28(11):2820–2826

    Article  CAS  Google Scholar 

  9. Major KJ, De C, Obare SO (2009) Recent advances in the synthesis of plasmonic bimetallic nanoparticles. Plasmonics 4(1):61–78

    Article  CAS  Google Scholar 

  10. Sikdar D, Rukhlenko ID, Cheng W, Premaratne M (2013) Effect of number density on optimal design of gold nanoshells for plasmonic photothermal therapy. Biom Opt Express 4(1):15–31

    Article  CAS  Google Scholar 

  11. Sikdar D, Rukhlenko ID, Cheng W, Premaratne M (2013) Optimized gold nanoshell ensembles for biomedical applications. Nanoscale Res Lett 8(1):142–146

    Article  Google Scholar 

  12. Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2007) Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics 2(3):107–118

    Article  CAS  Google Scholar 

  13. Lakowicz JR (2006) Plasmonics in biology and plasmon-controlled fluorescence. Plasmonics 1(1):5–33

    Article  CAS  Google Scholar 

  14. Zhu J, Ren Y, Zhao S, Zhao J (2012) The effect of inserted gold nanosphere on the local field enhancement of gold nanoshell. Mater Chem Phys 133(2):1060–1065

    Article  CAS  Google Scholar 

  15. Wu D, Jiang S, Liu X (2011) Tunable Fano resonances in three-layered bimetallic Au and Ag nanoshell. J Phys Chem C 115(48):23797–23801

    Article  CAS  Google Scholar 

  16. Hu Y, Fleming RC, Drezek RA (2008) Optical properties of gold–silica–gold multilayer nanoshells. Opt Exp 16(24):19579–19591

    Article  CAS  Google Scholar 

  17. Wu D, Xu X, Liu X (2008) Tunable near-infrared optical properties of three-layered metal nanoshells. J Chem Phys 129(7):074711

    Article  Google Scholar 

  18. Xia X, Liu Y, Backman V, Ameer GA (2006) Engineering sub-100 nm multi-layer nanoshells. Nanotechnol 17(21):5435–5440

    Article  CAS  Google Scholar 

  19. Hutter T, Elliott SR, Mahajan S (2013) Interaction of metallic nanoparticles with dielectric substrates: effect of optical constants. Nanotechnol 24(3):035201

    Article  Google Scholar 

  20. Zhang S, Bao K, Halas NJ, Xu H, Nordlander P (2011) Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed. Nano Lett 11(4):1657–1663

    Article  CAS  Google Scholar 

  21. Jian Z, Jian-jun L, Jun-wu Z (2011) Tuning the dipolar plasmon hybridization of multishell metal–dielectric nanostructure: gold nanosphere in a gold nanoshell. Plasmonics 6(3):527–534

    Article  Google Scholar 

  22. Chau YF, Jiang ZH (2011) Plasmonics effects of nanometal embedded in a dielectric substrate. Plasmonics 6(3):581–589

    Article  CAS  Google Scholar 

  23. Wu Y, Nordlander P (2010) Finite-difference time-domain modeling of the optical properties of nanoparticles near dielectric substrates. J Phys Chem C 114(16):7302–7307

    Article  CAS  Google Scholar 

  24. Knight MW, Wu Y, Lassiter JB, Nordlander P, Halas NJ (2009) Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle. Nano Lett 9(5):2188–2192

    Article  CAS  Google Scholar 

  25. Chen F, Johnston RL (2009) Plasmonic properties of silver nanoparticles on two substrates. Plasmonics 4(2):147–152

    Article  CAS  Google Scholar 

  26. Pinchuk A, Schatz G (2005) Anisotropic polarizability tensor of a dimer of nanospheres in the vicinity of a plane substrate. Nanotechnol 16(10):2209–2217

    Article  Google Scholar 

  27. Pinchuk A, Hilger A, Von Plessen G, Kreibig U (2004) Substrate effect on the optical response of silver nanoparticles. Nanotechnol 15(12):1890–1896

    Article  CAS  Google Scholar 

  28. Malinsky MD, Kelly KL, Schatz GC, Van Duyne RP (2001) Nanosphere lithography: effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles. J Phys Chem B 105(12):2343–2350

    Article  CAS  Google Scholar 

  29. Vernon KC, Funston AM, Novo C, Gomez DE, Mulvaney P, Davis TJ (2010) Influence of particle–substrate interaction on localized plasmon resonances. Nano Lett 10(6):2080–2086

    Article  CAS  Google Scholar 

  30. Gozhenko VV, Grechko LG, Whites KW (2003) Electrodynamics of spatial clusters of spheres: substrate effects. Phys Rev B 68(12):125422

    Article  Google Scholar 

  31. Ruppin R (1991) Optical absorption of a coated sphere above a substrate. Phys A 178(1):195–205

    Article  CAS  Google Scholar 

  32. Wind MM, Vlieger J, Bedeaux D (1987) The polarizability of a truncated sphere on a substrate I. Phys A 141(1):33–57

    Article  Google Scholar 

  33. Yamaguchi T, Yoshida S, Kinbara A (1974) Optical effect of the substrate on the anomalous absorption of aggregated silver films. Thin Solid Films 21(1):173–187

    Article  CAS  Google Scholar 

  34. Bedeaux D, Vlieger J (2004) Optical properties of surfaces. Imperial College Press, London

    Book  Google Scholar 

  35. Albella P, Garcia-Cueto B, Gonzalez F, Moreno F, Wu PC, Kim T, Brown A, Yang Y, Everitt HO, Videen G (2011) Shape matters: plasmonic nanoparticle shape enhances interaction with dielectric substrate. Nano Lett 11(9):3531–3537

    Article  CAS  Google Scholar 

  36. Valamanesh M, Borensztein Y, Langlois C, Lacaze E (2011) Substrate effect on the plasmon resonance of supported flat silver nanoparticles. J Phys Chem C 115(7):2914–2922

    Article  CAS  Google Scholar 

  37. Le F, Lwin N, Halas N, Nordlander P (2007) Plasmonic interactions between a metallic nanoshell and a thin metallic film. Phys Rev B 76(16):165410

    Article  Google Scholar 

  38. Roman-Velazquez CE, Noguez C, Barrera RG (2000) Substrate effects on the optical properties of spheroidal nanoparticles. Phys Rev B 61(15):10427–10436

    Article  CAS  Google Scholar 

  39. Yamamoto N, Ohtani S, Garcia de Abajo FJ (2010) Gap and mie plasmons in individual silver nanospheres near a silver surface. Nano letters 11(1):91–95

    Article  Google Scholar 

  40. Averitt RD, Westcott SL, Halas NJ (1999) Linear optical properties of gold nanoshells. J Opt Soc Am B 16(10):1824–1832

    Article  CAS  Google Scholar 

  41. Roman-Velazquez CE, Noguez C (2011) Designing the plasmonic response of shell nanoparticles: spectral representation. J Chem Phys 134:044116

    Article  Google Scholar 

  42. Sikdar D, Rukhlenko ID, Cheng W, Premaratne M (2013) Unveiling ultrasharp scattering–switching signatures of layered gold–dielectric–gold nanospheres. J Opt Soc Am B 30(8):2066–2074

    Article  CAS  Google Scholar 

  43. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370–4379

    Article  CAS  Google Scholar 

  44. Xiong W, Sikdar D, Walsh M, Si K, Tang Y, Chen Y, Mazid R, Weyland M, Rukhlenko ID, Etheridge J, Premaratne M, Lia X, Cheng W (2013) Single-crystal caged gold nanorods with tunable broadband plasmon resonances. Chem Commun 49:9630–9632

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work of DS is supported by Victoria India Doctoral Scholarship. The work of IDR, WC, and MP is supported by the Australian Research Council, through its Discovery Early Career Researcher Award DE120100055 and Discovery Grants DP120100170 and DP110100713, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debabrata Sikdar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sikdar, D., Rukhlenko, I.D., Cheng, W. et al. Tunable Broadband Optical Responses of Substrate-Supported Metal/Dielectric/Metal Nanospheres. Plasmonics 9, 659–672 (2014). https://doi.org/10.1007/s11468-014-9681-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-014-9681-8

Keywords

Navigation