Skip to main content

Advertisement

Log in

Effect of Aspect Ratio on the Catalytic Activities of Gold Nanorods

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Gold nanoparticles have shown great potential for heterogeneous catalysis. Herein, we show that the catalytic efficiency of gold nanorods (Au NRs) depends sensitively on their aspect ratio. The high-energy side facets of Au NRs play a crucial role in their catalytic efficiency. We have synthesized Au NRs of three different aspect ratios using a modified seed-mediated method. The aspect ratio of Au NRs increased from 2.3 to 4.6 and then to 5.4 with the addition of different concentrations of HNO3 in the growth solution. The synthesized Au NRs with different aspect ratios were tested for their catalytic activity towards the reduction of various organic pollutants such as 4-nitrophenol (4-NP), methylene blue (MB), and methyl orange (MO). It was found that for the same gold content, nanorods with a larger surface area of the high-energy side facets, irrespective of the overall surface area, were more effective catalysts in all cases.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yeh Y-C, Creran B, Rotello VM (2012) Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale 4(6):1871–1880

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Wang X, Wu J-R, Liang F, Yang Y-W (2019) In situ gold nanoparticle synthesis mediated by a water-soluble leaning pillar [6] arene for self-assembly, detection, and catalysis. Org Lett 21(13):5215–5218

    Article  CAS  PubMed  Google Scholar 

  3. Alegria EC, Ribeiro AP, Mendes M, Ferraria AM, Do Rego AMB, Pombeiro AJ (2018) Effect of phenolic compounds on the synthesis of gold nanoparticles and its catalytic activity in the reduction of nitro compounds. Nanomaterials 8(5):320

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pérez-Juste J, Pastoriza-Santos I, Liz-Marzán LM, Mulvaney P (2005) Gold nanorods: synthesis, characterization and applications. Coord Chem Rev 249(17–18):1870–1901

    Article  Google Scholar 

  5. Huang X, Neretina S, El-Sayed MA (2009) Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv Mater 21(48):4880–4910

    Article  CAS  PubMed  Google Scholar 

  6. Bond GC, Sermon PA, Webb G, Buchanan DA, Wells PB (1973) Hydrogenation over supported gold catalysts. J Chem Soc, Chem Commun 13:444b-b445

    Article  Google Scholar 

  7. Haruta M, Kobayashi T, Sano H, Yamada N (1987) Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 C. Chem Lett 16(2):405–408

    Article  Google Scholar 

  8. Hutchings GJ (1985) Vapor phase hydrochlorination of acetylene: correlation of catalytic activity of supported metal chloride catalysts. J Catal 96(1):292–295

    Article  CAS  Google Scholar 

  9. Priecel P, Salami HA, Padilla RH, Zhong Z, Lopez-Sanchez JA (2016) Anisotropic gold nanoparticles: preparation and applications in catalysis. Chinese J Catal 37(10):1619–50

    Article  CAS  Google Scholar 

  10. Ishida T, Murayama T, Taketoshi A, Haruta M (2019) Importance of size and contact structure of gold nanoparticles for the genesis of unique catalytic processes. Chem Rev 120(2):464–525

    Article  PubMed  Google Scholar 

  11. Kundu S, Lau S, Liang H (2009) Shape-controlled catalysis by cetyltrimethylammonium bromide terminated gold nanospheres, nanorods, and nanoprisms. J Phys Chem C 113(13):5150–5156

    Article  CAS  Google Scholar 

  12. Jiji S, Gopchandran K (2019) Shape dependent catalytic activity of unsupported gold nanostructures for the fast reduction of 4-nitroaniline. Colloid Interface Sci Commun 29:9–16

    Article  CAS  Google Scholar 

  13. Zhang Q, Wang H (2014) Facet-dependent catalytic activities of Au nanoparticles enclosed by high-index facets. ACS Catal 4(11):4027–4033

    Article  CAS  Google Scholar 

  14. Carbó-Argibay E, Rodríguez-González B, Gómez-Graña S, Guerrero-Martínez A, Pastoriza-Santos I, Pérez-Juste J et al (2010) The crystalline structure of gold nanorods revisited: evidence for higher-index lateral facets. Angew Chem 122(49):9587–9590

    Article  ADS  Google Scholar 

  15. Kooij ES, Ahmed W, Zandvliet HJ, Poelsema B (2011) Localized plasmons in noble metal nanospheroids. J Phys Chem C 115(21):10321–10332

    Article  CAS  Google Scholar 

  16. Scarabelli L, Sánchez-Iglesias A, Pérez-Juste J, Liz-Marzán LM (2015) A “tips and tricks” practical guide to the synthesis of gold nanorods. J Phys Chem Lett. https://doi.org/10.1021/acs.jpclett.5b02123

    Article  PubMed  Google Scholar 

  17. Busbee BD, Obare SO, Murphy CJ (2003) An improved synthesis of high-aspect-ratio gold nanorods. Adv Mater 15(5):414–416

    Article  CAS  Google Scholar 

  18. Khan HI, Khan GA, Mehmood S, Khan AD, Ahmed W (2019) Gold nanoworms: optical properties and simultaneous sers and fluorescence enhancement. Spectrochim Acta Part A Mol Biomol Spectrosc 220:117111

    Article  CAS  Google Scholar 

  19. Ahmed W, Öztürk İM, Iftikhar RMF, Bek A (2022) Seedless, size and shape controlled synthesis of gold mesoscopic particles and their excellent SERS applications. Mater Chem Phys 278:125589

    Article  CAS  Google Scholar 

  20. Wei Q, Ji J, Shen J (2008) PH controlled synthesis of high aspect-ratio gold nanorods. J Nanosci Nanotechnol 8(11):5708–5714

    Article  CAS  PubMed  Google Scholar 

  21. Abdullah A, Altaf M, Khan HI, Khan GA, Khan W, Ali A et al (2018) Facile room temperature synthesis of multifunctional CTAB coated gold nanoparticles. Chem Phys 510:30–36

    Article  CAS  Google Scholar 

  22. Wang S, Gao S, Tang Y, Wang L, Jia D, Liu L (2018) Facile solid-state synthesis of highly dispersed Cu nanospheres anchored on coal-based activated carbons as an efficient heterogeneous catalyst for the reduction of 4-nitrophenol. J Solid State Chem 260:117–123

    Article  ADS  CAS  Google Scholar 

  23. Muench F, Rauber M, Stegmann C, Lauterbach S, Kunz U, Kleebe H-J et al (2011) Ligand-optimized electroless synthesis of silver nanotubes and their activity in the reduction of 4-nitrophenol. Nanotechnology 22(41):415602

    Article  PubMed  Google Scholar 

  24. Gazi S, Ananthakrishnan R (2011) Metal-free-photocatalytic reduction of 4-nitrophenol by resin-supported dye under the visible irradiation. Appl Catal B 105(3–4):317–325

    Article  CAS  Google Scholar 

  25. He J, Unser S, Bruzas I, Cary R, Shi Z, Mehra R et al (2018) The facile removal of CTAB from the surface of gold nanorods. Colloids Surf, B 163:140–145

    Article  CAS  Google Scholar 

  26. Mills A, Hazafy D, Parkinson J, Tuttle T, Hutchings MG (2011) Effect of alkali on methylene blue (CI Basic Blue 9) and other thiazine dyes. Dyes Pigm 88(2):149–155

    Article  CAS  Google Scholar 

  27. Tahazadeh S, Karimi H, Mohammadi T, Emrooz HBM, Tofighy MA (2021) Fabrication of biodegradable cellulose acetate/MOF-derived porous carbon nanocomposite adsorbent for methylene blue removal from aqueous solutions. J Solid State Chem 299:122180

    Article  CAS  Google Scholar 

  28. Noubactep C (2009) Characterizing the discoloration of methylene blue in Fe0/H2O systems. J Hazard Mater 166(1):79–87

    Article  CAS  PubMed  Google Scholar 

  29. Khan GA, Esentürk EN, Bek A, Bhatti AS, Ahmed W (2021) Fabrication of highly catalytically active gold nanostructures on filter-paper and their applications towards degradation of environmental pollutants. ChemistrySelect 6(39):10655–10660

    Article  CAS  Google Scholar 

  30. Fan J, Guo Y, Wang J, Fan M (2009) Rapid decolorization of azo dye methyl orange in aqueous solution by nanoscale zerovalent iron particles. J Hazard Mater 166(2–3):904–910

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Ismail M, Gul S, Khan M, Khan MA, Asiri AM, Khan SB (2019) Green synthesis of zerovalent copper nanoparticles for efficient reduction of toxic azo dyes congo red and methyl orange. Green Process Synth 8(1):135–143

    Article  CAS  Google Scholar 

  32. Sha Y, Mathew I, Cui Q, Clay M, Gao F, Zhang XJ et al (2016) Rapid degradation of azo dye methyl orange using hollow cobalt nanoparticles. Chemosphere 144:1530–1535

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Higher Education Commission (HEC) Pakistan for National Research Program for Universities (NRPU) Grant No. 8380.

Funding

Higher Education Commission Pakistan, 8380

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sana Sabahat or Waqqar Ahmed.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalil, L., Sabahat, S. & Ahmed, W. Effect of Aspect Ratio on the Catalytic Activities of Gold Nanorods. Catal Lett 154, 1018–1025 (2024). https://doi.org/10.1007/s10562-023-04369-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04369-0

Keywords

Navigation