Skip to main content
Log in

Controlled synthesis of monodisperse gold nanorods with different aspect ratios in the presence of aromatic additives

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

This paper reports the synthesis of monodisperse gold nanorods (GNRs) via a simple seeded growth approach in the presence of different aromatic additives, such as 7-bromo-3-hydroxy-2-naphthoic acid (7-BrHNA), 3-hydroxy-2-naphthoic acid (HNA), 5-bromosalicylic acid (5-BrSA), salicylic acid (SA), or phenol (PhOH). Effects of the aromatic additives and hydrochloric acid (HCl) on the structure and optical properties of the synthesized GNRs were investigated. The longitudinal surface plasmon resonance (LSPR) peak wavelength of the resulting GNRs was found to be dependent on the aromatic additive in the following sequence: 5-BrSA (778 nm) > 7-BrHNA (706 nm) > SA (688 nm) > HNA (676 nm) > PhOH (638 nm) without the addition of HCl, but this was changed to 7-BrHNA (920 nm) > SA (890 nm) > HNA (872 nm) > PhOH (858 nm) > 5-BrSA (816 nm) or 7-BrHNA (1,005 nm) > PhOH (995 nm) > SA (990 nm) > HNA (980 nm) > 5-BrSA (815 nm) with the addition of HCl or HNO3, respectively. The LSPR peak wavelength was increased with the increasing concentration of 7-BrHNA without HCl addition; however, there was a maximum LSPR peak wavelength when HCl was added. Interestingly, the LSPR peak wavelength was also increased with the amount of HCl added. The results presented here thus established a simple approach to synthesize monodisperse GNRs of different LSPR wavelengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Almora-Barrios N, Novell-Leruth G, Whiting P, Liz-Marzán LM, López N (2014) Theoretical description of the role of halides, silver, and surfactants on the structure of gold nanorods. Nano Lett 14:871–875. doi:10.1021/nl404661u

    Article  Google Scholar 

  • Busbee BD, Obare SO, Murphy CJ (2003) An improved synthesis of high-aspect-ratio gold nanorods. Adv Mater 15:414–416. doi:10.1002/adma.200390095

    Article  Google Scholar 

  • Charan S, Sanjiv K, Singh N, Chien F-C, Chen Y-F, Nergui NN, Huang S-H, Kuo CW, Lee T-C, Chen P (2012) Development of chitosan oligosaccharide-modified gold nanorods for in vivo targeted delivery and noninvasive imaging by NIR irradiation. Bioconjug Chem 23:2173–2182. doi:10.1021/bc3001276

    Article  Google Scholar 

  • Cheng J, Ge L, Xiong B, He Y (2011) Investigation of pH effect on gold nanorod synthesis. J Chin Chem Soc 58:822–827. doi:10.1002/jccs.201190128

    Article  Google Scholar 

  • Edgar JA, McDonagh AM, Cortie MB (2012) Formation of gold nanorods by a stochastic “popcorn” mechanism. ACS Nano 6:1116–1125. doi:10.1021/nn203586j

    Article  Google Scholar 

  • Gai PL, Harmer MA (2002) Surface atomic defect structures and growth of gold nanorods. Nano Lett 2:771–774. doi:10.1021/nl0202556

    Article  Google Scholar 

  • Garg N, Scholl C, Mohanty A, Jin R (2010) The role of bromide ions in seeding growth of Au nanorods. Langmuir 26:10271–10276. doi:10.1021/la100446q

    Article  Google Scholar 

  • Gomez-Grana S, Hubert F, Testard F, Guerrero-Martínez A, Grillo I, Liz-Marzán LM, Spalla O (2011) Surfactant (bi) layers on gold nanorods. Langmuir 28:1453–1459. doi:10.1021/la203451p

    Article  Google Scholar 

  • Grzelczak M, Pérez-Juste J, Mulvaney P, Liz-Marzán LM (2008) Shape control in gold nanoparticle synthesis. Chem Soc Rev 37:1783–1791. doi:10.1039/B711490G

    Article  Google Scholar 

  • Hassan P, Yakhmi J (2000) Growth of cationic micelles in the presence of organic additives. Langmuir 16:7187–7191. doi:10.1021/la000517o

    Article  Google Scholar 

  • Huang X, Neretina S, El-Sayed MA (2009) Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv Mater 21:4880–4910. doi:10.1002/adma.200802789

    Article  Google Scholar 

  • Huang H, Li C, Qu C, Huang S, Liu F, Zeng Y (2012) Sensitive detection of DNA based on the optical properties of core–shell gold nanorods. J Nanopart Res 14:1–7. doi:10.1007/s11051-012-0754-3

    Google Scholar 

  • Jana NR, Gearheart L, Murphy CJ (2001) Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J Phys Chem B 105:4065–4067. doi:10.1021/jp0107964

    Article  Google Scholar 

  • Johnson CJ, Dujardin E, Davis SA, Murphy CJ, Mann S (2002) Growth and form of gold nanorods prepared by seed-mediated, surfactant-directed synthesis. J Mater Chem 12:1765–1770. doi:10.1039/B200953F

    Article  Google Scholar 

  • Lai J, Zhang L, Niu W, Qi W, Zhao J, Liu Z, Zhang W, Xu G (2014) One-pot synthesis of gold nanorods using binary surfactant systems with improved monodispersity, dimensional tunability and plasmon resonance scattering properties. Nanotechnology 25:125601. doi:10.1088/0957-4484/25/12/125601

    Article  Google Scholar 

  • Lin Z, Cai J, Scriven L, Davis H (1994) Spherical-to-wormlike micelle transition in CTAB solutions. J Phys Chem 98:5984–5993. doi:10.1021/j100074a027

    Article  Google Scholar 

  • Liu X, Huang N, Li H, Wang H, Jin Q, Ji J (2014) Multidentate polyethylene glycol modified gold nanorods for in vivo near-infrared photothermal cancer therapy. ACS Appl Mater Interfaces 6:5657–5668. doi:10.1021/am5001823

    Article  Google Scholar 

  • Lohse SE, Murphy CJ (2013) The quest for shape control: a history of gold nanorod synthesis. Chem Mater 25:1250–1261. doi:10.1021/cm303708p

    Article  Google Scholar 

  • Menon D, Basanth A, Retnakumari A, Manzoor K, Nair SV (2012) Green synthesis of biocompatible gold nanocrystals with tunable surface plasmon resonance using garlic phytochemicals. J Biomed Nanotechnol 8:901–911. doi:10.1166/jbn.2012.1455

    Article  Google Scholar 

  • Michota A, Bukowska J (2003) Surface-enhanced Raman scattering (SERS) of 4-mercaptobenzoic acid on silver and gold substrates. J Raman Spectrosc 34:21–25. doi:10.1002/jrs.928

    Article  Google Scholar 

  • Murphy CJ, Sau TK, Gole AM, Orendorff CJ, Gao J, Gou L, Hunyadi SE, Li T (2005) Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 109:13857–13870. doi:10.1021/jp0516846

    Article  Google Scholar 

  • Murphy CJ, Thompson LB, Alkilany AM, Sisco PN, Boulos SP, Sivapalan ST, Yang JA, Chernak DJ, Huang J (2010) The many faces of gold nanorods. J Phys Chem Lett 1:2867–2875. doi:10.1021/jz100992x

    Article  Google Scholar 

  • Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15:1957–1962. doi:10.1021/cm020732l

    Article  Google Scholar 

  • Orendorff CJ, Murphy CJ (2006) Quantitation of metal content in the silver-assisted growth of gold nanorods. J Phys Chem B 110:3990–3994. doi:10.1021/jp0570972

    Article  Google Scholar 

  • Rao P, Doremus R (1996) Kinetics of growth of nanosized gold clusters in glass. J Non Cryst Solids 203:202–205. doi:10.1016/0022-3093(96)00483-8

    Article  Google Scholar 

  • Sau TK, Murphy CJ (2004) Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir 20:6414–6420. doi:10.1021/la049463z

    Article  Google Scholar 

  • Sharma V, Park K, Srinivasarao M (2009) Colloidal dispersion of gold nanorods: historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly. Mater Sci Eng R Rep 65:1–38. doi:10.1016/j.mser.2009.02.002

    Article  Google Scholar 

  • Si S, Leduc C, Delville MH, Lounis B (2012) Short gold nanorod growth revisited: the critical role of the bromide counterion. ChemPhysChem 13:193–202. doi:10.1002/cphc.201100710

    Article  Google Scholar 

  • Song J, Pu L, Zhou J, Duan B, Duan H (2013) Biodegradable theranostic plasmonic vesicles of amphiphilic gold nanorods. ACS Nano 7:9947–9960. doi:10.1021/nn403846v

    Article  Google Scholar 

  • Tian Y, Chen L, Zhang J, Ma Z, Song C (2012) Bifunctional Au-nanorod@ Fe3O4 nanocomposites: synthesis, characterization, and their use as bioprobes. J Nanopart Res 14:1–11. doi:10.1007/s11051-012-0998-y

    Google Scholar 

  • Wadams RC, Fabris L, Vaia RA, Park K (2013) Time-dependent susceptibility of the growth of gold nanorods to the addition of a cosurfactant. Chem Mater 25:4772–4780. doi:10.1021/cm402863h

    Article  Google Scholar 

  • Wang C, Wang T, Ma Z, Su Z (2005) pH-tuned synthesis of gold nanostructures from gold nanorods with different aspect ratios. Nanotechnology 16:2555. doi:10.1088/0957-4484/16/11/015

    Article  Google Scholar 

  • Wang Z, Zong S, Yang J, Song C, Li J, Cui Y (2010) One-step functionalized gold nanorods as intracellular probe with improved SERS performance and reduced cytotoxicity. Biosens Bioelectron 26:241–247. doi:10.1016/j.bios.2010.06.032

    Article  Google Scholar 

  • Wang C-H, Chang C-W, Peng C-A (2011) Gold nanorod stabilized by thiolated chitosan as photothermal absorber for cancer cell treatment. J Nanopart Res 13:2749–2758. doi:10.1007/s11051-010-0162-5

    Article  Google Scholar 

  • Wang X, Shao M, Zhang S, Liu X (2013) Biomedical applications of gold nanorod-based multifunctional nano-carriers. J Nanopart Res 15:1–16. doi:10.1007/s11051-013-1892-y

    Google Scholar 

  • Xu C, Yang D, Mei L, Lu B, Chen L, Li Q, Zhu H, Wang T (2013) Encapsulating gold nanoparticles or nanorods in graphene oxide shells as a novel gene vector. ACS Appl Mater Interfaces 5:2715–2724. doi:10.1021/am400212j

    Article  Google Scholar 

  • Ye X, Jin L, Caglayan H, Chen J, Xing G, Zheng C, Doan-Nguyen V, Kang Y, Engheta N, Kagan CR, Murray CB (2012) Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives. ACS Nano 6:2804–2817. doi:10.1021/nn300315j

    Article  Google Scholar 

  • Ye X, Gao Y, Chen J, Reifsnyder DC, Zheng C, Murray CB (2013) Seeded growth of monodisperse gold nanorods using bromide-free surfactant mixtures. Nano Lett 13:2163–2171. doi:10.1021/nl400653s

    Article  Google Scholar 

  • Yoo H, Sharma J, Yeh H-C, Martinez JS (2010) Solution-phase synthesis of Au fibers using rod-shaped micelles as shape directing agents. Chem Commun 46:6813–6815. doi:10.1039/C0CC02100H

    Article  Google Scholar 

  • Zhong Y, Wang C, Cheng L, Meng F, Zhong Z, Liu Z (2013) Gold nanorod-cored biodegradable micelles as a robust and remotely controllable doxorubicin release system for potent inhibition of drug-sensitive and-resistant cancer cells. Biomacromolecules 14:2411–2419. doi:10.1021/bm400530d

    Article  Google Scholar 

  • Zhu J, Yong KT, Roy I, Hu R, Ding H, Zhao L, Swihart MT, He GS, Cui Y, Prasad PN (2010) Additive controlled synthesis of gold nanorods (GNRs) for two-photon luminescence imaging of cancer cells. Nanotechnology 21:285106. doi:10.1088/0957-4484/21/28/285106

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (NSFC, Grant No.81171439), the National Key Technology R&D Program of the Ministry of Science and Technology (2012BAI18B01), the European Union Marie Curie Action via a Marie Curie International Incoming Fellowship to S.G. (Grant No. PIIF-GA-2012-331281), and the University of Leeds (UK).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dejian Zhou or Shengrong Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wang, F., Guo, Y. et al. Controlled synthesis of monodisperse gold nanorods with different aspect ratios in the presence of aromatic additives. J Nanopart Res 16, 2806 (2014). https://doi.org/10.1007/s11051-014-2806-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2806-3

Keywords

Navigation