Skip to main content
Log in

Two α-Arabinofuranosidases from Chrysoporthe cubensis and Their Effects on Sugarcane Bagasse Saccharification

  • Original Research
  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Two α-arabinofuranosidases from the fungus Chrysoporthe cubensis COAD 3356 were partially purified, identified, characterized, and applied to the sugarcane bagasse saccharification to evaluate the potential of these enzymes to increase the sugar production from lignocellulosic biomass. The α-arabinofuranosidases were classified on GH51 (α-Ara1) and GH54/CBM42 (α-Ara2) families. After sugarcane bagasse saccharification, using the commercial cellulase-rich cocktail supplemented with α-Ara2 (15 U/g), there was an increase of 1.6, 3.9, and 6.1 times in the release of glucose, xylose, and arabinose, respectively. On the other hand, there was no increase in sugar release with α-Ara1 supplementation under the same saccharification conditions. The enzymes presented maximum activity at pH 4.0, and 60 °C. Both α-Ara1 and α-Ara2 were thermostable at 50 °C, presenting half-life values of 68 and 77 h, respectively. The enzyme α-Ara2 presented higher KMapp for synthetic substrate ρNP-α-arabinofuranoside (1.38 mmol/L) and wheat arabinoxylan (1.28 mmol/L) when compared with α-Ara1. A new fungal α-arabinofuranosidase structure, still little described in the GH51 family, was predicted. Furthermore, the results indicated that α-Ara2 is a promising molecule to be used to supplement cocktails for lignocellulose degradation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Brosa M, Yelle DJ, Serwańska K (2022) Bioethanol production from lignocellulosic biomass — challenges and solutions. Molecules 27(24):8717. https://doi.org/10.3390/molecules27248717

    Article  CAS  Google Scholar 

  2. de Albuquerque MFG, Leal TF, Ázar RISL, Milagres AMF, Guimarães VM, de Rezende ST (2021) Hydrothermal pretreatment as a strategy for the improvement of sugarcane bagasse saccharification by fungal enzyme blend. Braz Arch Biol Technol 64:e21200422. https://doi.org/10.1590/1678-4324-2021200422

    Article  CAS  Google Scholar 

  3. De Albuquerque MFG, Guimarães VM, De Rezende ST (2021) Use of sugar beet flour and wheat bran as carbon source improves the efficiency of Chrysoporthe cubensis enzymes in sugarcane bagasse saccharification. Bioenergy Res 14:1147–1160. https://doi.org/10.1007/s12155-020-10224-6

    Article  CAS  Google Scholar 

  4. Dutra TR, Guimarães VM, Varela EM (2017) A Chrysoporthe cubensis enzyme cocktail produced from a low-cost carbon source with high biomass hydrolysis efficiency. Sci Rep 1–9. https://doi.org/10.1038/s41598-017-04262-y

  5. Patel H, Chapla D, Divecha J, Shah A (2015) Improved yield of α-L-arabinofuranosidase by newly isolated Aspergillus niger ADH-11 and synergistic effect of crude enzyme on saccharification of maize stover. Bioresour Bioprocess 2:1–14. https://doi.org/10.1186/s40643-015-0039-7

    Article  CAS  Google Scholar 

  6. Xin D, Chen X, Wen P, Zhang J (2019) Insight into the role of α - arabinofuranosidase in biomass hydrolysis : cellulose digestibility and inhibition by xylooligomers. Biotechnol Biofuels 12:1–11. https://doi.org/10.1186/s13068-019-1412-0

    Article  Google Scholar 

  7. Li X, Dilokpimol A, Kabel MA (2022) De Vries, RP (2022) Fungal xylanolytic enzymes: diversity and applications. Bioresour Technol 344:126–290. https://doi.org/10.1016/j.biortech.2021.126290

    Article  CAS  Google Scholar 

  8. Poria V, Saini JK, Singh S, Nain L, Kuhad RC (2020) Arabinofuranosidases: characteristics, microbial production, and potential in waste valorization and industrial applications. Bioresour Technol 304:123019. https://doi.org/10.1016/j.biortech.2020.123019

    Article  CAS  PubMed  Google Scholar 

  9. Temer B, Terrasan CRF, Carmona EC (2014) a-L-Arabinofuranosidase from Penicillium janczewskii: Production with brewers spent grain and orange waste. Afri J Biotechnol 13:1796–1806. https://doi.org/10.5897/AJB2013.13361

    Article  CAS  Google Scholar 

  10. Numan MT, Bhosle NB (2006) α-L-arabinofuranosidases: the potential applications in biotechnology. J Ind Microbiol Biotechnol 33:247–260. https://doi.org/10.1007/s10295-005-0072-1

    Article  CAS  PubMed  Google Scholar 

  11. Falkoski DL, Guimarães VM, de Almeida MN, Alfenas ACA, Colodette JL, de Rezende ST (2013) Chrysoporthe cubensis: a new source of cellulases and hemicellulases to application in biomass saccharification processes. Bioresour Technol 130:296–305. https://doi.org/10.1016/j.biortech.2012.11.140

    Article  CAS  PubMed  Google Scholar 

  12. Maitan-Alfenas GP, Michael E, Ferreira R, Ris B, Nogueira G, Galvão G et al (2015) The influence of pretreatment methods on saccharification of sugarcane bagasse by an enzyme extract from Chrysoporthe cubensis and commercial cocktails : a comparative study. Bioresour Technol 192:670–676. https://doi.org/10.1016/j.biortech.2015.05.109

    Article  CAS  PubMed  Google Scholar 

  13. Gomes KS, Maitan-Alfenas GP, de Andrade LGA, Falkoski DL, Guimarães VM, Alfenas AC et al (2017) Purification and characterization of xylanases from the fungus Chrysoporthe cubensis for production of xylooligosaccharides and fermentable sugars. Appl Biochem Biotechnol 182:818–830. https://doi.org/10.1007/s12010-016-2364-5

    Article  CAS  Google Scholar 

  14. de Andrade LGA, Maitan-Alfenas GP, Morgan T, Gomes KS, Falkoski DL, Alfenas RF et al (2017) Sugarcane bagasse saccharification by purified β-glucosidases from Chrysoporthe cubensis. Biocatal Agric Biotechnol 12:199–205. https://doi.org/10.1016/j.bcab.2017.10.007

    Article  Google Scholar 

  15. Tavares MP, Morgan T, Gomes RF, Mendes JPR, Castro-Borges W, Maitan-Alfenas GP, Guimarães VM (2024) Comparative analysis of Chrysoporthe cubensis exoproteomes and their specificity for saccharification of sugarcane bagasse. Enzyme Microb Technol 173–110365. https://doi.org/10.1016/j.enzmictec.2023.110365

  16. Tavares MP, Morgan T, Gomes RF, Rodrigues MQRB, Castro-borges W, de Rezende ST, Mendes TAO, Guimarães VM (2021) Secretomic insight into the biomass hydrolysis potential of the phytopathogenic fungus Chrysoporthe cubensis. J Proteomics 236:1–14. https://doi.org/10.1016/j.jprot.2021.104121

    Article  CAS  Google Scholar 

  17. Canilha L, Chandel AK, Milessi TSDS et al (2012) Bioconversion of sugarcane biomass into ethanol: an overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification, and ethanol fermentation. J Biomed Biotechnol 2012:1–15. https://doi.org/10.1155/2012/989572

    Article  CAS  Google Scholar 

  18. Thite VS, Nerurkar AS (2019) Valorization of sugarcane bagasse by chemical pretreatment and enzyme mediated deconstruction. Sci Rep 9:15904. https://doi.org/10.1038/s41598-019-52347-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kellock M, Rahikainen J, Marjamaa K, Kruus K (2017) Ligninderived inhibition of monocomponent cellulases and a xylanase in the hydrolysis of lignocellulosics. Bioresour Technol 232:183–191. https://doi.org/10.1016/j.biortech.2017.01.072

    Article  CAS  PubMed  Google Scholar 

  20. Cardona CA, Quintero JA, Paz IC (2010) Production of bioethanol from sugarcane bagasse: status and perspectives. Bioresour Technol 101:4754–4766. https://doi.org/10.1016/j.biortech.2009.10.097

    Article  CAS  PubMed  Google Scholar 

  21. Alvira P, Negro MJ, Ballesteros M (2019) Effect of endoxylanase and alpha-L-arabinofuranosidase supplementation on the enzymatic hydrolysis of steam exploded wheat straw. Bioresour Technol 102(6):4552–4558. https://doi.org/10.1016/j.biortech.2010.12.112

    Article  CAS  Google Scholar 

  22. Cintra LC, Costa IC, Oliveira ICM, Fernandes AG, Faria SP, Jesuíno RSA, Ravanal MC, Eyzaguirre J, Ramos LP, Faria FP, Ulhoa CJ (2020) The boosting effect of recombinant hemicellulases on the enzymatic hydrolysis of steam-treated sugarcane bagasse. Enzyme Microb Technol 133. https://doi.org/10.1016/j.enzmictec.2019.109447

  23. Gao D, Uppugundla N, Chundawat SPS, Yu X, Hermanson S, Gowda K et al (2011) Hemicellulases and auxiliary enzymes for improved conversion of lignocellulosic biomass to monosaccharides. Biotechnol Biofuels 4(1):5. https://doi.org/10.1186/1754-6834-4-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang J, Siika-aho M, Tenkanen M, Viikari L (2011) The role of acetyl xylan esterase in the solubilization of xylan and enzymatic hydrolysis of wheat straw and giant reed. Biotechnol Biofuels 4:1–60. https://doi.org/10.1186/1754-6834-4-60

    Article  CAS  Google Scholar 

  25. Selig MJ, Thygesen LG, Felby C, Master ER (2015) Debranching of soluble wheat arabinoxylan dramatically enhances recalcitrant binding to cellulose. Biotechnol Lett 37:633–641. https://doi.org/10.1007/s10529-014-1705-0

    Article  CAS  PubMed  Google Scholar 

  26. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD et al (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85. https://doi.org/10.1016/0003-2697(85)90442-7

    Article  CAS  PubMed  Google Scholar 

  27. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. https://doi.org/10.1038/227680a0

    Article  CAS  PubMed  Google Scholar 

  28. Miller GL (1959) Use of dinitrosalicyclic reagent for determination of reducing sugar. Anal Chem 31:426–428. https://doi.org/10.1021/ac60147a030

    Article  CAS  Google Scholar 

  29. Bischoff KM, de Rezende ST, Larson TM, Liu S, Hughes SR, Rich JO (2011) Purification and characterization of arabinofuranosidase from the corn endophyte Acremonium zeae. Biotechnol Lett 33:2013–2018. https://doi.org/10.1007/s10529-011-0658-9

    Article  CAS  PubMed  Google Scholar 

  30. Kaneko S, Arimoto M, Ohba M, Kobayashi H, Ishii T, Kusakabe I (1998) Purification and substrate specificities of two α-l-arabinofuranosidases from Aspergillus awamori IFO 4033. Appl Environ Microbiol 64:4021–7. https://doi.org/10.1128/2Faem.64.10.4021-4027.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Terrone CC, Nascimento JMF, Terrasan CRF, Brienzo M, Carmona EC (2020) Salt-tolerant α-arabinofuranosidase from a new specie Aspergillus hortai CRM1919: production in acid conditions, purification, characterization and application on xylan hydrolysis. Biocatal Agric Biotechnol 23. https://doi.org/10.1016/j.bcab.2019.101460

  32. Lavarack BP, Griffin GJ, Rodman D (2002) The acid hydrolysis of sugarcane bagasse hemicellulose to produce xylose, arabinose, glucose and other products. Biomass Bioenergy 23(5):367–380. https://doi.org/10.1016/S0961-9534(02)00066-1

    Article  CAS  Google Scholar 

  33. Rezende CA, De LMA, Maziero P, Ribeiro E (2011) Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility. Biotechnol Biofuels 4:54. https://doi.org/10.1186/1754-6834-4-54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Faria SP, Ramos G, Melo D, Cardoso L, Pereira L, Santos R et al (2020) Production of cellulases and xylanases by Humicola grisea var. thermoidea and application in sugarcane bagasse arabinoxylan hydrolysis. Ind Crops Prod 158:1–11. https://doi.org/10.1016/j.indcrop.2020.112968

    Article  CAS  Google Scholar 

  35. Lagaert S, Pollet A, Courtin CM, Volckaert G (2014) β-xylosidases and α-L-arabinofuranosidases: accessory enzymes for arabinoxylan degradation. Biotechnol Adv 32(2):316–332. https://doi.org/10.1016/j.biotechadv.2013.11.005

    Article  CAS  PubMed  Google Scholar 

  36. Tu T, Li X, Meng K, Bai Y, Wang Y, Wang Z et al (2019) A GH51 α-l-arabinofuranosidase from Talaromyces leycettanus strain JCM12802 that selectively drives synergistic lignocellulose hydrolysis. Microb Cell Fact 18:3–10. https://doi.org/10.1186/s12934-019-1192-z

    Article  CAS  Google Scholar 

  37. Long L, Sun L, Lin Q, Ding S, St John FJ (2020) Characterization and functional analysis of two novel thermotolerant α-l-arabinofuranosidases belonging to glycoside hydrolase family 51 from Thielavia terrestris and family 62 from Eupenicillium parvum. Appl Microbiol Biotechnol 104:8719–8733. https://doi.org/10.1007/s00253-020-10867-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Motta MLL, Filho JAF, de Melo RR et al (2021) A novel fungal metal-dependent α-L-arabinofuranosidase of family 54 glycoside hydrolase shows expanded substrate specificity. Sci Rep 11:10961. https://doi.org/10.1038/s41598-021-90490-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gilead S, Shoham Y (1995) Purification and characterization of alpha-L-arabinofuranosidase from Bacillus stearothermophilus T-6. Appl Environ Microbiol 61(1):170–174. https://doi.org/10.1128/aem.61.1.170-174.1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Miyanaga A, Koseki T, Matsuzawa H, Wakagi T, Shoun H, Fushinobu S (2004) Crystal structure of a family 54 a-L-arabinofuranosidase reveals a novel carbohydrate-binding module that can bind arabinose. J Biol Chem 279:44907–44914. https://doi.org/10.1074/jbc.M405390200

    Article  CAS  PubMed  Google Scholar 

  41. Carli S, Meleiro LP, Salgado JCS, Ward RJ (2022) Synthetic carbohydrate - binding module - endogalacturonase chimeras increase catalytic efficiency and saccharification of lignocellulose residues. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-022-02716-6

    Article  Google Scholar 

  42. Gonçalves TA, Damásio ARL, Segato F, Alvarez TM, Bragatto J, Brenelli LB et al (2012) Functional characterization and synergic action of fungal xylanase and arabinofuranosidase for production of xylooligosaccharides. Bioresource Technol 119:293–299. https://doi.org/10.1016/j.biortech.2012.05.062

    Article  CAS  Google Scholar 

  43. Coconi Linares N, Li X, Dilokpimol A, de Vries RP (2022) Comparative characterization of nine novel GH51, GH54 and GH62 α-l-arabinofuranosidases from Penicillium subrubescens. FEBS Lett 596:360–368. https://doi.org/10.1002/1873-3468.14278

    Article  CAS  PubMed  Google Scholar 

  44. Wu X, Zhang S, Zhao S, Dai L, Huang S, Liu X et al (2022) Functional specificity of three α-arabinofuranosidases from different glycoside hydrolase families in Aspergillus niger An76. J Agric Food Chem 70(16):5039–5048. https://doi.org/10.1021/acs.jafc.1c08388

    Article  CAS  PubMed  Google Scholar 

  45. Qiao J, Cui H, Wang M, Fu X, Wang X, Li X et al (2022) Integrated biorefinery approaches for the industrialization of cellulosic ethanol fuel. Bioresource Technol 360:127516. https://doi.org/10.1016/j.biortech.2022.127516

    Article  CAS  Google Scholar 

  46. Karnchanatat A, Petsom A, Sangvanich P, Piapukiew J, Whalley AJS, Reynolds CD et al (2008) A novel thermostable endoglucanase from the wood-decaying fungus Daldinia eschscholzii (Ehrenb.:Fr.) Rehm. Enzyme Microb Technol 42:404–413. https://doi.org/10.1016/j.enzmictec.2007.11.009

    Article  CAS  Google Scholar 

  47. Ribeiro T, Santos-Silva T, Alves VD, Dias FMV, Luís AS, Prates JAM et al (2010) Family 42 carbohydrate-binding modules display multiple arabinoxylan-binding interfaces presenting different ligand affinities. Biochim Biophys Acta - Proteins Proteom 1804:2054–2062. https://doi.org/10.1016/j.bbapap.2010.07.006

    Article  CAS  Google Scholar 

  48. De Wet BJM, Matthew MKA, Storbeck KH, Van Zyl WH, Prior BA (2008) Characterization of a family 54 α-L-arabinofuranosidase from Aureobasidium pullulans. Appl Microbiol Biotechnol 77:975–983. https://doi.org/10.1007/s00253-007-1235-y

    Article  CAS  PubMed  Google Scholar 

  49. Sakamoto T, Ogura A, Inui M, Tokuda S, Hosokawa S, Ihara H et al (2011) Identification of a GH62 α-l-arabinofuranosidase specific for arabinoxylan produced by Penicillium chrysogenum. Appl Microbiol Biotechnol 90:137–146. https://doi.org/10.1007/s00253-010-2988-2

    Article  CAS  PubMed  Google Scholar 

  50. Fujimoto Z (2013) Structure and function of carbohydrate-binding module families 13 and 42 of glycoside hydrolases, Comprising a β-Trefoil Fold. Biosci Biotechnol Biochem 77:1363–1371. https://doi.org/10.1271/bbb.130183

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the Brazilian institutions Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the scholarship granted to the first author, Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the resources provided to complete this experiment. We would also like to thank Felipe Bini for reviewing the English-language version of the manuscript.

Funding

This work was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES); the Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Mariana Furtado Granato de Albuquerque, Murillo Peterlini Tavares, Lílian da Silva Fialho, and Rafaela Inês de Souza Ladeira Ázar. The first draft of the manuscript was written by Mariana Furtado Granato de Albuquerque, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Valéria Monteze Guimarães.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Albuquerque, M.F.G., de Almeida, M.N., Tavares, M.P. et al. Two α-Arabinofuranosidases from Chrysoporthe cubensis and Their Effects on Sugarcane Bagasse Saccharification. Bioenerg. Res. (2024). https://doi.org/10.1007/s12155-024-10721-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12155-024-10721-y

Keywords

Navigation