Skip to main content
Log in

Debranching of soluble wheat arabinoxylan dramatically enhances recalcitrant binding to cellulose

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

The presence of xylan is a detriment to the enzymatic saccharification of cellulose in lignocelluloses. The inhibition of the processive cellobiohydrolase Cel7A by soluble wheat arabinoxylan is shown here to increase by 50 % following enzymatic treatment with a commercially-purified α-l-arabinofuranosidase. The enhanced inhibitory effect was shown by T2 relaxation time measurements via low field NMR to coincide with an increasing degree of constraint put on the water in xylan solutions. Furthermore, quartz crystal micro-balance with dissipation experiments showed that α-l-arabinofuranosidase treatment considerably increased the rate and rigidity of arabinoxylan mass association with cellulose. These data also suggest significant xylan–xylan adlayer formation occurs following initial binding of debranched arabinoxylan. From this, we speculate the inhibitory effects of xylan to cellulases may result from reduced enzymatic access via the dense association of xylan with cellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Almond A (2005) Towards understanding the interaction between oligosaccharides and water molecules. Carbohydr Res 340:907–920

    Article  CAS  PubMed  Google Scholar 

  • Baumann MJ, Borch K, Westh P (2011) Xylan oligosaccharides and cellobiohydrolase I (TrCel7A) interaction and effect on activity. Biotechnol Biofuels 4:45

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chandler D (2005) Interfaces and the driving force of hydrophobic assembly. Nature 437:640–647

    Article  CAS  PubMed  Google Scholar 

  • Cremer D, Pople JA (1975) A general definition of ring puckering coordinates. J Am Chem Soc 97:1354–1358

    Article  CAS  Google Scholar 

  • Dashnau JL, Sharp KA, Vanderkooi JM (2005) Carbohydrate intramolecular hydrogen bonding cooperativity and its effect on water structure. J Phys Chem B 109:24152–24159

    Article  CAS  PubMed  Google Scholar 

  • Dillon SR, Dougherty RC (2002) Raman studies of the solution structure of univalent electrolytes in water. J Phys Chem A 106:7647–7650

    Article  CAS  Google Scholar 

  • Engelund ET, Thygesen LG, Svensson S, Hill CAS (2013) A critical discussion of the physics of wood–water interactions. Wood Sci Technol 47:141–161

    Article  CAS  Google Scholar 

  • Felby C, Thygesen LG, Kristensen JB, Jorgensen H, Elder T (2008) Cellulose-water interactions during enzymatic hydrolysis as studied by time domain NMR. Cellulose 15(5):703–710

    Article  CAS  Google Scholar 

  • Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315(5813):804–807

    Article  CAS  PubMed  Google Scholar 

  • Jeoh T, Ishizawa CI, Davis MF, Himmel ME, Adney WS, Johnson DK (2007) Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnol Bioeng 98(1):112–122

    Article  CAS  PubMed  Google Scholar 

  • Kabel MA, Bos G, Zeevalking J, Voragen AGJ, Schols HA (2007a) Effect of pretreatment severity on xylan solubility and enzymatic breakdown of the remaining cellulose from wheat straw. Biores Technol 98(10):2034–2042

    Article  CAS  Google Scholar 

  • Kabel M, Van den Borne H, Vincken JP, Voragen AGJ, Schols HA (2007b) Structural differences of xylans effect their interaction with cellulose. Carbohydr Polym 69:94–105

    Article  CAS  Google Scholar 

  • Kim S, Holtzapple M (2006) Effect of structural features on enzyme digestibility of corn stover. Bioresour Technol 97:583–591

    Article  CAS  PubMed  Google Scholar 

  • Köhnke T, Ostlund A, Brelid H (2011) Adsorption of arabinoxylan on cellulosic surfaces: influence of degree of substitution and substitution pattern on adsorption characteristics. Biomacromolecules 12:2633–2641

    Article  PubMed  Google Scholar 

  • Matthews JF, Skopec CE, Mason PE, Zuccato P, Torget RW, Sugiyama J, Himmel ME, Brady JW (2006) Computer simulation studies of microcrystalline cellulose Ib. Carbohydr Res 341:138–152

    Article  CAS  PubMed  Google Scholar 

  • Mrevlishvili GM (1998) Low-temperature heat capacity of biomacromolecules and the entropic cost of bound water in proteins and nucleic acids (DNA). Thermochim Acta 308:49–54

    Article  CAS  Google Scholar 

  • Pitkanen L, Viikari L, Tenkanen M, Tuomainen P (2009) Comprehensive multidetector HPSEC study on solution properties of cereal arabinoxylans in aqueous and DMSO solutions. Biomacromolecules 10:1962–1969

    Article  CAS  PubMed  Google Scholar 

  • Qing Q, Yang B, Wyman CE (2010) Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes. Biores Technol 101(24):9624–9630

    Article  CAS  Google Scholar 

  • Roberts KM, Lavenson DM, Tozzi EJ, McCarthy MJ, Jeoh T (2011) The effects of water interactions in cellulose suspensions on mass transfer and saccharification efficiency at high solids loadings. Cellulose 18:759–773

    Article  CAS  Google Scholar 

  • Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289

    Article  CAS  PubMed  Google Scholar 

  • Selig MJ, Vinzant TB, Himmel ME, Decker SR (2009) The effect of lignin removal by alkaline peroxide pretreatment on the susceptibility of corn stover to purified cellulolytic and hemicellulolytic enzymes. Appl Biochem Biotechnol 155(1–3):397–406

    CAS  PubMed  Google Scholar 

  • Selig MJ, Hsieh CC, Thygesen L, Himmel ME, Felby C, Decker SR (2012) Considering water availability and the effect of solute concentration on high solids saccharification of lignocellulosic biomass. Biotechnol Prog 28(6):1478–1490

    Article  CAS  PubMed  Google Scholar 

  • Selig MJ, Thygesen LG, Felby C (2014) Constrained water and the inhibition of cellulose saccharification by lignocellulosic plant polymers. Biotech Biofuels in press: editorially accepted October 2014

  • Sternemalm E, Höije A, Gatenholm P (2008) Effect of arabinose substitution on the material properties of arabinoxylan films. Carbohydr Res 343:753–757

    Article  CAS  PubMed  Google Scholar 

  • Vogel J (2008) Unique aspects of the grass cell wall. Curr Opin Plant Biol 11:301–307

    Article  CAS  PubMed  Google Scholar 

  • Wolfe J, Bryant G, Koster KL (2002) What is ‘unfreezable water’, how unfreezable is it and how much is there? CryoLetters 23:157–166

    PubMed  Google Scholar 

  • Yang B, Wyman CE (2004) Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnol Bioeng 86(1):88–95

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Tang M, Viikari L (2012) Xylans inhibit enzymatic hydrolysis of lignocellulosic materials by cellulases. Biores Technol 121:8–12

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Selig.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selig, M.J., Thygesen, L.G., Felby, C. et al. Debranching of soluble wheat arabinoxylan dramatically enhances recalcitrant binding to cellulose. Biotechnol Lett 37, 633–641 (2015). https://doi.org/10.1007/s10529-014-1705-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-014-1705-0

Keywords

Navigation