Skip to main content
Log in

α-l-Arabinofuranosidases: the potential applications in biotechnology

  • Review
  • Published:
Journal of Industrial Microbiology and Biotechnology

Abstract

Recently, α-l-arabinofuranosidases (EC3.2.1.55) have received increased attention primarily due to their role in the degradation of lignocelluloses as well as their positive effect on the activity of other enzymes acting on lignocelluloses. As a result, these enzymes are used in many biotechnological applications including wine industry, clarification of fruit juices, digestion enhancement of animal feedstuffs and as a natural improver for bread. Moreover, these enzymes could be used to improve existing technologies and to develop new technologies. The production, mechanisms of action, classification, synergistic role, biochemical properties, substrate specificities, molecular biology and biotechnological applications of these enzymes have been reviewed in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Moromi is a fermenting mixture or mash of rice, water, koji (malted soybeans) and A. oryzae, which is produced during the traditional fermentation of soy sauce and in the production of sake, the traditional alcoholic beverage in Japan.

  2. as cited by [108].

References

  1. Adams EL, Kroon PA, Williamson G, Gilbert HJ, Morrisa VJ (2004) Inactivated enzymes as probes of the structure of arabinoxylans as observed by atomic force microscopy. Carbohydr Res 339:579–590

    Article  PubMed  CAS  Google Scholar 

  2. AkaoT, Kida H, Kanaoka M, Hattori M, Kobashi K (1998) Intestinal bacterial hydrolysis is required for the appearance of compound K in rat plasma after oral administration of ginsenoside Rb1 from panax ginseng. J Pharm Pharmacol 50:1155–1160

    PubMed  Google Scholar 

  3. Aryon AP, Wilson B, Strauss CR, Williams PJ (1987) The properties of glycosidases of Vitis vinifera and a comparison of their β-glucosidase activity with that of exogenous enzymes. An assessment of possible applications in enology. Am J Enol Viticult 38:182–188

    Google Scholar 

  4. Bachmann SL, McCarthy AJ (1991) Purification and cooperative activity of enzymes constituting the xylan-degrading system of Thermomonospora fusca. Appl Microbiol Biotechnol 57:2121–2130

    CAS  Google Scholar 

  5. Bacic A, Stone BA (1980) A (1→3)- and (1→4)-linked β-d-glucan in the endosperm cell-walls of wheat. Carbohydr Res 82:372–377

    Article  CAS  Google Scholar 

  6. Bae E-A, Choo M-K, Park S-Y, Shin H-Y, Kim D-H (2002) Metabolism of ginsenoside Rc by human intestinal bacteria and its related antiallergic activity. Biol Pharm Bull 25:743–747

    Article  PubMed  CAS  Google Scholar 

  7. Bae E-A, Park S-Y, Kim D-H (2000) Constitutive β-glucosidase hydrolyzing ginsenoside Rb1 and Rb2 from human intestinal bacteria. Biol Pharm Bull 23:1481–1485

    PubMed  CAS  Google Scholar 

  8. Beldman G, Schols HA, Pitson SM, Searl-van Leeuwen MJF, Voragen AGJ (1997) Arabinans and arabinan degrading enzymes. Adv Macromol Carbohydr Res 1:1–64

    CAS  Google Scholar 

  9. Beylot M-H, Mckie VA, Voragen AGJ, Doeswijk-Voragen CHL, Gilbert HJ (2001) The Pseudomonas cellulosa glycoside hydrolase family 51 arabinofuranosidase exhibits wide substrate specificity. Biochem J 358:607–614

    Article  PubMed  CAS  Google Scholar 

  10. Bezalel L, Shoham Y, Rosenberg E (1993) Characterization and delignification activity of a thermostable α-l-arabinofuranosidase from Bacillus stearothermophilus. Appl Microbiol Biotechnol 40:57–62

    Article  CAS  Google Scholar 

  11. Birgisson H, Fridjonsson O, Bahrani-Mougeot FK, Hreggvidsson GO, Kristjansson JK, Mattiasson BA (2004) New thermostable α-l-arabinofuranosidase from a novel thermophilic bacterium. Biotechnol Lett 26:1347–1351

    Article  PubMed  CAS  Google Scholar 

  12. Biskup SE, Intert F, Holthnujzen JH, Stengele M, Schultz G (1993) Glycosically bound volatiles-A review 1986–1991. Flav Fragr J 8:61–80

    Article  Google Scholar 

  13. Bolam DN, Xie H, Pell G, Hogg D, Galbraith G, Henrissat B,Gilbert HJ (2004) X4 Modules represent a new family of carbohydrate-binding modules that display novel properties. J Biol Chem 279:22953–22963

    Article  PubMed  CAS  Google Scholar 

  14. Campbell GL, Bedford MR (1992) Enzyme applications for monogastric feeds: a review. Can J Anim Sci 72:449–466

    CAS  Google Scholar 

  15. Carvallo M, de Ioannes P, Navarro C, Chavez R, Peirano A, Bull P, Eyzaguirre J (2003) Characterization of an α-l-arabinofuranosidase gene (abf1) from Penicillium purpurogenum and its expression. Mycol Res 107:388–394

    Article  PubMed  CAS  Google Scholar 

  16. Casier JPJ, De Paepe G, Brummer JM (1973) Effect of water-soluble wheat and rye pentosans on the baking properties derived from wheat flours and other raw materials. Getreide Mehl und Brot 27:36–43

    CAS  Google Scholar 

  17. Catoire L, Goldenberg R, Pierron M, Morvan C, Hervé du Penhoat C (1998) An efficient procedure for studying pectin structure which combines limited depolymerization and C13 NMR. Eur Biophys J 27:127–136

    Article  PubMed  CAS  Google Scholar 

  18. Chacòn-Martènez CA, Anzola JM, Rojasa A, Hernández F, Junca H, Ocampo W, Del Portillo P (2004) Identification and characterization of the α-l-arabinofuranosidase B of Fusarium oxysporum f. sp. Dianthi (Fod). Phys Mol Plant Pathol 64:201–208

    Article  CAS  Google Scholar 

  19. Chesson A (1987) Supplementary enzymes to improve the utilization of pig and poultary diets. In: Haresigin W, Cole DJA (eds) Recent advances in animal nutrition, Butterworths, London, pp 71–89

    Google Scholar 

  20. Churms SC, Merrifield EH, Stephen AM, Walvyn DR, Polson A, Merwe van den KJ, Spies HSC, Costa N (1983) An L-arabinan from apple-juice concentrates. Carbohydr Res 113:339–344

    Article  CAS  Google Scholar 

  21. Coen JA, Dehority BA (1970) Degradation and utilization of hemicellulose from intact forages by pure cultures of rumen bacteria. Appl Microbiol 20:362–368

    PubMed  CAS  Google Scholar 

  22. Cotta MA (1993) Utilization of Xylooligosaccharides by Selected Ruminal Bacteria. Appl Environ Microbiol 59:3557–3563

    PubMed  CAS  Google Scholar 

  23. Coutinho PM, Henrissat B (1999) Carbohydrate-active enzymes server at http://www.afmb.cnrs-mrs.fr/_/cazy/CAZY/index.html

  24. Dahlberg L, Holst O, Kristjansson JK (1993) Thermostable xylanolytic enzymes from Rhodothermus marinus grown on xylan. Appl Microbiol Biotechnol 40:63–68

    Article  CAS  Google Scholar 

  25. Davies G, Henrissat B (1995) Structures and mechanisms of glycosyl hydrolases. Structure 3:853–859

    Article  CAS  Google Scholar 

  26. de Grootet LMJ, van de Vondervoort PJI, de Vries RP, vanKuyk PA, Ruijter IJG, Visser J (2003) Isolation and characterization of two specific regulatory Aspergillus niger mutants shows antagonistic regulation of arabinan and xylan metabolism. Microbiology 149:1183–1191

    Article  PubMed  CAS  Google Scholar 

  27. De Ioannes P, Peirano A, Steiner J, Eyzaguirre J (2000) An α-l-arabinofuranosidase from Penicillium purpurogenum: production, purification and properties. J Biotechnol 7:253–258

    Article  Google Scholar 

  28. De Vries JA, Rombouts FM, Voragen AGJ, Pilnik W (1982) Enzymic degradation of apple pectins. Carbohydr Polym 2:25–33

    Article  Google Scholar 

  29. De Vries RP, Kester HCM, Poulsen CH, Benen JAE, Visser J (2000) Synergy between enzymes from Aspergillus involved in the degradation of plant cell wall polysaccharides. Carbohydr Res 327:401–410

    Article  PubMed  Google Scholar 

  30. De Vries RP, Visser J (2001) Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol Mol Biol Rev 65:497–522

    Article  PubMed  Google Scholar 

  31. Debeche T, Cummings N, Connerton I, Debeire P, O’Donohue MJ (2000) Genetic and biochemical characterization of a highly thermostable α-l-arabinofuranosidase from Thermobacillus xylanilyticus. Appl Environ Microbiol 6:1734–1736

    Article  Google Scholar 

  32. Degrassi G, Vindigni A, Venturi VA (2003) Thermostable α-arabinofuranosidase from xylanolytic Bacillus pumilus: purification and characterization. J Biotechnol 101:69–79

    Article  PubMed  CAS  Google Scholar 

  33. Dehority BA (1965) Degradation and utilization of isolated hemicellulose by pure cultures of cellulolytic rumen bacteria. J Bacteriol 89:1515–1520

    PubMed  CAS  Google Scholar 

  34. Dehority BA (1967) Rate of isolated hemicellulose degradation and utilization by pure cultures of rumen bacteria. Appl Microbiol 15:987–993

    PubMed  CAS  Google Scholar 

  35. Dehority BA, Scott HW (1967) Extent of cellulose and hemicellulose digestion in various forages by pure cultures of rumen bacteria. J Dairy Sci 50:1136–1141

    Article  CAS  Google Scholar 

  36. Ferchichi M, Rèmond C, Simo R, O’Donohue MJ (2003) Investigation of the functional relevance of the catalytically important Glu28 in family 51 arabinosidases. FEBS Lett 553:381–386

    Article  PubMed  CAS  Google Scholar 

  37. Fernández-Espinar MT, Pena JL, Pinaga F, Valles S (1994) Alpha ararbinofuranosidase production by Aspergillus nidulans. FEMS Microbiol Lett 115:107–112

    Article  PubMed  Google Scholar 

  38. Ferré H, Broberg A, Duus JØ, Thomsen KK (2000) A novel type of arabinoxylan arabinofuranohydrolase isolated from germinated barley. Analysis of substrate preference and specificity by nano-probe NMR. Eur J Biochem 267:6633–6641

    Article  PubMed  Google Scholar 

  39. Fessas D, Schiraldi A (1998) Texture and staling of wheat bread crumb: effects of water extractable proteins and pentosans. Thermochim Acta 323:17–26

    Article  CAS  Google Scholar 

  40. Filho EFE, Puls J, Coughlan MP (1996) Purification and characterization of two arabinofuranosidases from solid-state cultures of the fungus Penicillium capsulatum. Appl Environ Microbiol 62:168–173

    PubMed  CAS  Google Scholar 

  41. Gasparic A, Romana M-L, Martin J, Wallace RJ, Nekrep FV, Flint HJ (1995) Isolation of genes encoding β-d-xylanase, β-d-xylosidase and α-l-arabinofuranosidase activities from the rumen bacterium Prevotella ruminicola B14. FEMS Microbiol Lett 125:135–142

    Article  PubMed  CAS  Google Scholar 

  42. Giinata Z, Bitteur S, Brillouet JM, Bayanove C, Cordonnier R (1988) Sequential enzymic hydrolysis of potentially aromatic glycosides from grape. Carbohydr Res 184:139–149

    Article  Google Scholar 

  43. Giinata Z, Dugelay I, Sapis JC, Baumes R, Baya-nove C (1990) Action des glycosidases exogknes au tours de la vinification: liberation de I’arome a partir de prcurseurs glycosidiques. J Int Sci Vigne Vin 24:133–144

    Google Scholar 

  44. Gobbetti M, De Angelis M, Arnaut P, Tossut P, Corsetti A, Lavermicocca P (1999) Added pentosans in breadmaking: fermentations of derived pentoses by sourdough lactic acid bacteria. Food Microbiol 16:409–418

    Article  CAS  Google Scholar 

  45. Gobbetti M, Lavermicocca P, Minervini F, De Angelis M, Corsetti A (2000) Arabinose fermentation by Lactobacillus plantarum in sourdough with added pentosans and α-l-arabinofuranosidase: a tool to increase the production of acetic acid. J Appl Microbiol 88:317–324

    Article  PubMed  CAS  Google Scholar 

  46. Gomes J, Gomes I, Terler K, Gubala N, Ditzelmüller G, Steinera W (2000) Optimisation of culture medium and conditions for α-l-rabinofuranosidase production by the extreme thermophilic eubacterium Rhodothermus marinus. Enzyme Microb Technol 27:414–422

    Article  PubMed  CAS  Google Scholar 

  47. Greve LC, Labavitch JM, Hungate RE (1984) α-l-Arabinofuranosidase from Ruminococcus albus 8: purification and possible roles in hydrolysis of alfalfa cell wall. Appl Environ Microbiol 47:1135–1140

    PubMed  CAS  Google Scholar 

  48. Gübitz GM, Haltrich D, Latal B, Steiner W (1997) Mode of depolymerisation of hemicellulose by various mannanases and xylanases in relation to their ability to bleach softwood pulp. Appl Microbiol Biotechnol 47:658–621

    Article  Google Scholar 

  49. Habibi Y, Heyraud A, Mahrouz M, Vignon MR (2004) Structural features of pectic polysaccharides from the skin of Opuntia ficus-indica prickly pear fruits. Carbohydr Res 339:1119–1127

    Article  PubMed  CAS  Google Scholar 

  50. Hasegawa H, Sung JH, Benno Y (1997) Role of human intestinal Prevotella oris in hydrolyzing ginseng saponins. Planta Med 63:436–440

    Article  PubMed  CAS  Google Scholar 

  51. Hashimoto T, Nakata Y (2003) Synergistic degradation of arabinoxylan with α-l-arabinofuranosidase, xylanase and β-xylosidase from soy sauce koji mold, Aspergillus oryzae, in high salt condition. J Biosci Bioeng 95:164–169

    PubMed  CAS  Google Scholar 

  52. Henrissat B, Davies GJ (2000) Glycoside hydrolases and glycosyltransferases families, modules and implications for genomics. Plant Physiol 124:1515–1519

    Article  PubMed  CAS  Google Scholar 

  53. Hespell RB, Cotta MA (1995) Degradation and utilization by Butyrivibrio fibrisolvens H17c of xylans with different chemical and physical properties. Appl Environ Microbiol 61:3042–3050

    PubMed  CAS  Google Scholar 

  54. Hespell RB, O`Bryan P (1992) Purification and characterization of an α-L-arabinofuranosidase from Butyrivibrio fibrisolvens GS113. Appl Environ Microbiol 58:1082–1088

    PubMed  CAS  Google Scholar 

  55. Hood EE, Jilka JM (1999) Plant-based production of xenogenic proteins. Curr Open Biotechnol 10:382–386

    Article  CAS  Google Scholar 

  56. Hövel K, Shallom D, Niefind K, Belakhov V, Shoham G, Baasov T, Shoham Y, Schomburg D (2003) Crystal structure and snapshots along the reaction pathway of a family 51 α-l-arabinofuranosidase. EMBO J 22:4922–4932

    Article  PubMed  Google Scholar 

  57. Huerta-Ochoa S, Nicolàs-Santiago MS, Acosta-Hernàndez WD, Prado-Barragàn LA, Gutiérrez-López GF, Garcia-Almendàrez BE, Regaldo-González C (2003) Production and partial purification of glycosidases obtained by solid-state fermentation of grape Pomace using Aspergillus niger 10. In: Nathan VE, Gutierrez-Lopez GF, Barbosa G (eds) Food science and food biotechnology. CRS Press, Florida, pp 119–137

  58. Jankiewicz M, Michniewicz J (1987) The effect of soluble pentosans isolated from rye grain on staling of bread. Food Chem 25:241–246

    Article  CAS  Google Scholar 

  59. Jiménez T, Martinez-Anaya MA (eds) (1999) Enzymes, a key to improve bread and dough quality: degradation by products and relationship with quality. In: Abstracts of the 17th ICC Conference of the Cereal Across the Continents, Instituto de Agroquimica Tecnologia de Alimentos, Valencia, p 168

  60. Kaji A (1984) L-arabinosidases. Adv Carbohydr Chem Biochem 42:382–394

    Google Scholar 

  61. Kaji A, Tagawa K (1970) Purification, crystallisation, and amino acid composition of α-l-arabinofuranosidase from Aspergillus niger. Biochim Biophys Acta 207:456–464

    PubMed  CAS  Google Scholar 

  62. Kaneko S, Arimoto M, Ohba M, Kobayashi H, Ishii T, Kusakabe I (1998) Purification and substrate specificities of two α-L-arabinofuranosidases from Aspergillus awamori IFO 4033. Appl Environ Microbiol 64:4021–4027

    PubMed  CAS  Google Scholar 

  63. Kellet LE, Poole DM, Ferreira LMA, Durrant AJ, Hazlewood GP, Gilbert HJ (1990) Xylanase B and an arabinofuranosidase from Pseudomonas fluorescens subsp. cellulosa contain identical cellulose-binding domains and are encoded by adjacent genes. Biochem J 272:369–376

    PubMed  Google Scholar 

  64. Kim SK, D’Appolonia BL (1977) Bread staling studies. III. Effect of pentosans on dough, bread, and bread staling rate. Cereal Chem 54:225–229

    CAS  Google Scholar 

  65. Kimura I, Yoshioka N, Kimura Y, Tajima S (2000) Cloning, sequencing and expression of an α-L-arabinofuranosidase from Aspergillus sojae. J Biosci Bioeng 89:262–266s

    Article  PubMed  CAS  Google Scholar 

  66. Komae K, Kaji A, Sato M (1982) An α-l-arabinofuranosidase from Streptomyces purpuascens IFO 3389. Agric Bio Chem 46:1899–1905

    CAS  Google Scholar 

  67. Kormelink FMJ, Voragen AGJ (1993) Degradation of different [(glucurono)arabino] xylans by combination of purified xylan degrading enzymes. Appl Microbiol Biotechnol 38:688–695

    Article  CAS  Google Scholar 

  68. Koseki T, Okuda M, Sudah S, Kizaki Y, Iwano K, Aramaki I, Matsuzawa H (2003) Role of two α-l-arabinofuranosidases in arabinoxylan degradation and characteristics of the encoding genes from shochu koji molds, Aspergillus kawachii and Aspergillus awamori. J Biosce Bioeng 96:232–241

    CAS  Google Scholar 

  69. Kosugi A, Murashima K, Doi RH (2002) Characterization of two noncellulosomal subunits, ArfA and BgaA, from Clostridium cellulovorans that cooperate with the cellulosome in plant cell wall degradation. J Bacteriol 184:6859–6865

    Article  PubMed  CAS  Google Scholar 

  70. Kroon PA, Williamson G (1996) Release of ferulic acid from sugar-beet pulp by using arabinanase, arabinofuranosidase and an esterase from Aspergillus niger. Biotechnol Appl Biochem 23:263–267s

    PubMed  CAS  Google Scholar 

  71. Kuno A, Sbimizu D, Kaneko S, Koyama Y, Yoshida S, Kohayashi H, Hayashi K, Taira K, Kusakabe I (1998) PCR cloning and expression of the F/10 family xylanase gene from Streptomyces olivaceoviridis E-86. J Ferment Bioeng 86:434–439

    Article  CAS  Google Scholar 

  72. Leathers TD (2003) Bioconversions of maize residues to value-added co-products using yeast-like fungi. FEMS Yeast Res 3:133–140

    Article  PubMed  CAS  Google Scholar 

  73. Lee RC, Hrmova M, Burton RA, Lahnstein J, Fincher GB (2003) Bifunctional family 3 glycoside hydrolases from barley with α-l-arabinofuranosidase and β-d-Xylosidase activity: characterization, primary structures, and COOH-terminal. J Biol Chem 278:5377–5387

    Article  PubMed  CAS  Google Scholar 

  74. Mai V, Wiegel J, Lorenz W (2000) Cloning, sequencing, and characterization of the bifunctional xylosidase–arabinosidase from the anaerobic thermophile Thermoanaerobacter ethanolicus. Gene 247:137–143

    Article  PubMed  CAS  Google Scholar 

  75. Manelius A, Dahlberg L, Holst O (1994) Some properties of a thermostable β-xylosidase from Rhodothermus marinus. Appl Biochem Biotechnol 44:39–48

    CAS  Google Scholar 

  76. Margolles A, de los Reyes-Gavilán CG (2003) Purification and functional characterization of a novel α-l-arabinofuranosidase from Bifidobacterium longum B667. Appl Environ Microbiol 69:5096–5103

    Article  PubMed  CAS  Google Scholar 

  77. Margolles-Clark E, Tenkanen M, Nakari-Setala T, Penttila M (1996) Cloning of genes encoding α-l-arabinofuranosidase and β-xylosidase from Trichoderma reesei by expression in Saccharomyces cerevisiae. Appl Environ Microbiol 62:3840–3846

    PubMed  CAS  Google Scholar 

  78. Marlatt C, Ho C-T, Chien M (1992) Studies of aroma constituents bound as glycosides in tomato. J Agric Food Chem 40:249–252

    Article  CAS  Google Scholar 

  79. Martinez-Anaya MA, Devesa A (eds) (1999) Enzymes and sourdough starters govern bread and dough quality: influence on dough-bread pentosans. In: Abstracts of the 17th ICC Conference of the Cereal Across the Continents, Instituto de Agroquimica Tecnologia de Alimentos, Valencia p 168

  80. Mateo JJ, Jimènez M (2000) Monoterpenes in grape juice and wines. J Chromatogr A 881:557–567

    Article  PubMed  CAS  Google Scholar 

  81. Mathlouthi N, Saulnier L, Quemener B, Araier L (2002) Xylanase and β-glucanase and other side enzymatic activities have greater effects on the viscosity of several feedstuffs than xylanase and β-glucanase used alone or in combination. J Agric Food Chem 50:5121–5127

    Article  PubMed  CAS  Google Scholar 

  82. Matsumura K, Obata H, Hata Y, Kawato A, Abe Y, Akita O (2004) Isolation and characterization of a novel gene encoding α-l-arabinofuranosidase from Aspergillus oryzae. J Biosci Bioeng 98:77–84

    PubMed  CAS  Google Scholar 

  83. Matte A, Forsberg CW (1992) Purification, characterization, and mode of action of endoxylanases 1 and 2 from Fibrobacter succinogenes S85. Appl Environ Microbiol 58:157–168

    PubMed  CAS  Google Scholar 

  84. Matuso N, Kaneko S, Kuno A, Kobayashi H, Kusakabes I (2000) Purification, characterization and gene cloning of two α-l-arabinofuranosidases from Streptomyces chartreusis GS901. Biochem J 346:9–15

    Article  PubMed  Google Scholar 

  85. Mc Cleary BV, Harrington J, Allen H (1988) Enzymic solutions to polysaccharide related industrial problems. In: Phillips GO, Williams PA, Wedlock DJ (eds) Gums and stabilizers for the industry. IRL Press, Oxford, pp 51–62

  86. Miyanaga A, Koseki T, Matsuzawa H, Wakagi T, Shoun H, Fushinobu S (2004) Crystal structure of a family 54 α-l-arabinofuranosidase reveals a novel carbohydrate binding module that can bind arabinose. J Biol Chem 279:44907–44914

    Article  PubMed  CAS  Google Scholar 

  87. Miyazaki K (2005) Hyperthermophilic α-l-arabinofuranosidase from Thermotoga maritima MSB8: molecular cloning, gene expression, and characterization of the recombinant protein. Extremophiles 9:399–406

    Article  PubMed  CAS  Google Scholar 

  88. Morales P, Sendra JM, Pèrez-González JA (1995) Purification and characterization of an arabinofuranosidase from Bacillus polymyxa expressed in Bacillus subtilis. Appl Microbiol Biotechnol 44:112–117

    Article  PubMed  CAS  Google Scholar 

  89. Morrison IM (1982). The degradation of isolated hemicellulose and lignin-hemicellulose complexes by cell free, rumen hemicellulase. Carbohydr Res 101:93–100

    Article  Google Scholar 

  90. Patterson JA (1989) Prospects for establishment of genetically engineered microorganisms in the rumen. Enzyme Microb Technol 11:187–189

    Article  CAS  Google Scholar 

  91. Pilnik W (1982) Enzymes in the beverage industry. In: Dupuy P(ed) Use of enzymes in food technology, Lavoisier, Paris, pp 425–449

  92. Piston SM, Voragen AG, Beldman G (1996) Stereochemical course of hydrolysis catalyzed by arabinofuranohydrolases. FEBS Lett 398:7–11

    Article  PubMed  Google Scholar 

  93. Rahman SAKM, Kato K, Kawai S, Takamizawa K (2003) Substrate specificity of the α-l-arabinofuranosidase from Rhizomucor pusillus HHT-1. Carbohydr Res 338:1469–1476

    Article  PubMed  CAS  Google Scholar 

  94. Rémond C, Ferchichi M, Aubry N, Plantier-Royon R, Portella C, O’Donohue MJ (2002) Enzymatic synthesis of alkyl arabinofuranosides using a thermostable α-l-arabinofuranosidase. Tetrahedron Lett 43:9653–9655

    Article  Google Scholar 

  95. Rémond C, Plantier-Royon R, Aubry N, Maes E, Bliardc C, O’Donohue MJ (2004) Synthesis of pentose-containing disaccharides using a thermostable α-l-arabinofuranosidase. Carbohydr Res 339:2019–2025

    Article  PubMed  CAS  Google Scholar 

  96. Roche N, Berna P, Desgranges C, Durand A (1995) Substrate use and production of α-l-arabinofuranosidase during solid-state culture of Trichoderma reesei on sugar beet pulp. Enzyme Microb Technol 17:935–941

    Article  CAS  Google Scholar 

  97. Romboust FM, Voragen AGJ, Searle-van Leenwen MF, Geraeds CCJM, Schols HA, Pilnik W (1988) The arabinanases of Asperigillus niger—purification and characterization of two α-L- arabinofuranosidase and an endo-1,5-α-l-arabinanase. Carbohydr Polym 9:25–47

    Article  Google Scholar 

  98. Rye CS, Withers SG (2000) Glycosidase mechanisms. Curr Opin Chem Biol 4:573–580

    Article  PubMed  CAS  Google Scholar 

  99. Saha BC (2000) α-l-Arabinofuranosidases: biochemistry, molecular biology and application in biotechnology. Biotech Adv 18:403–423

    Article  CAS  Google Scholar 

  100. Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291

    Article  PubMed  CAS  Google Scholar 

  101. Saha BC, Bothast RJ (1998) Purification and characterization of a novel thermostable α-l-arabinofuranosidase from a color–variant strain of a Aureobasidium pullulans. Appl Environ Microbiol 64:216–220

    PubMed  CAS  Google Scholar 

  102. Sakamoto T, Kawasaki H (2003) Purification and properties of two type-B α-l-arabinofuranosidases produced by Penicillium chrysogenum. Bioch et Biophy Acta 1621:204–210

    CAS  Google Scholar 

  103. Sakamoto T, Thibault J-F (2001) Exo-Arabinanase of Penicillium chrysogenum able to release arabinobiose from α-1,5-l-Arabinan. Appl Environ Microbiol 67:3319–3321

    Article  PubMed  CAS  Google Scholar 

  104. Sanai K, Seri K, Inoue S (1997) Inhibition of sucrose digestion and absorption by l-arabinose in rats. Nihon Eiyou Syokuryougaku Kaishi (in Japanese) 50:133–137

    CAS  Google Scholar 

  105. Schwab W, Scheller G, Schreier P (1990) Glycosidically bound aroma components from sour cherry. Phytochemistry 29:607–612

    Article  CAS  Google Scholar 

  106. Seri K, Sanai K, Matsuo N, Kawakubo K, Xue C, Inoue S (1996) l-arabinose selectively inhibits intestinal sucrase in uncompetitive manner and reduces glycemic response after sucrose ingestion in animals. Metabolism 45:1368–1374

    Article  PubMed  CAS  Google Scholar 

  107. Shallom D, Belakhov V, Solomon D, Gilead-Gropper S, Baasov T, Shoham G, Shohama Y (2002) The identification of the acid-base catalyst of α-arabinofuranosidase from Geobacillus stearothermophilus T-6, a family 51 glycoside hydrolase. FEBS Lett 514:163–167

    Article  PubMed  CAS  Google Scholar 

  108. Shin H-Y, Park S-Y, Sung JH, Kim D-H (2003) Purification and characterization of α-l-arabinopyranosidase and α-l-arabinofuranosidase from Bifidobacterium breve K-110, a human intestinal anaerobic bacterium metabolizing ginsenoside Rb2 and Rc. Appl Environ Microbiol 69:7116–7123

    Article  PubMed  CAS  Google Scholar 

  109. Skjat M, Kuppinen S, Kofod LV, Fulsang C, Pauly M, Dalofe H, Anderson LN (2001) Functional cloning of an endo-arabinanase from Aspergillus aculeatus and its heterologous exptression in A. oryzae and tobacco. Mol Genet Genomics 265:913–921

    Article  PubMed  Google Scholar 

  110. Sknchez-Torres P, GonzBlez-Candelas L, Ramón D (1996) Expression in a wine yeast strain of the Aspergillus niger abfB gene. FEMS Microbiol Lett 145:189–194

    Article  PubMed  Google Scholar 

  111. Sørensen HR, Pedersen S, Viksø-Nielsen A, Meyer AS (2005) Efficiencies of designed enzyme combinations in releasing arabinose and xylose from wheat arabinoxylan in an industrial ethanol fermentation residue. Enzyme Microb Technol 36:773–784

    Article  CAS  Google Scholar 

  112. Sozzi GO, Greve LC, Prody GA, Labavitch JM (2002) Gibberellic acid, synthetic auxins, and ethylene differentially modulate α-l-arabinofuranosidase activities in antisense 1-aminocyclopropane-1-carboxylic acid synthase Tomato Pericarp Discs. Plant Physiol 129:1330–1340

    Article  PubMed  CAS  Google Scholar 

  113. Spagna G, Andreani F, Salatelli E, Romagnoli D, Casarini D, Pifferi PG (1998) Immobilization of the glycosidases: α-l-arabinofuranosidase and β-d-glucopyranosidase from Aspergillus niger on a chitosan derivative to increase the aroma of wine. Part II. Enzyme Microb Technol 23:413–421

    Article  CAS  Google Scholar 

  114. Spagna G, Barbagalloa RN, Grecob E, Manentib I, Pifferi PG (2002) A mixture of purified glycosidases from Aspergillus niger for oenological application immobilised by inclusion in chitosan gels. Enzyme Microb Technol 30:80–89

    Article  CAS  Google Scholar 

  115. Takao M, Akiyama K, Sakai T (2002) Purification and characterization of thermostable endo-1,5-α-l-Arabinase from a strain of Bacillus thermodenitrificans. Appl Environ Microbiol 68:1639–1646

    Article  PubMed  CAS  Google Scholar 

  116. Tsujibo H, Takada C, Wakamatsu Y, Kosaka M, Tsuji A, Miamuto K, Inamori Y (2002) Cloning and expression of an arabinofuranosidase (STX- IV) Streptomyces thermoviolaceus OPC-520, and characterization of the enzyme. Biosci Biotechnol Biochem 66:434–438

    Article  PubMed  CAS  Google Scholar 

  117. Tuncer M, Ball AS, Robb A, Wilson MT (1999) Optimization of extracellular lignocellulolytic enzyme production by a thermophilic actinomycete Thermomonospora fusca BD2. Enzyme Microb Technol 25:38–47

    Article  CAS  Google Scholar 

  118. Tuncer M (2000) Characterization of β-xylosidase and α-l-arabinofuranosidase activities from Thermomonospora Fusca BD25. Turk J Biol 24:753–767

    CAS  Google Scholar 

  119. Tuncer M, Ball AS (2003) Purification and partial characterization of α-l-arabinofuranosidase produced by Thermomonospora fusca. Folia Microbiol 48:168–172

    CAS  Google Scholar 

  120. Tuncer M, Ball AS (2003) Co-operative actions and degradation analysis of purified xylan-degrading enzymes from Thermomonospora fusca BD25 on oat-spelt xylan. J Appl Microbiol 94:1030–1035

    Article  PubMed  CAS  Google Scholar 

  121. Utt EA, Eddy CK, Keshav KF, Ingram LO (1991) Sequencing and expression of the Butyrivibrio fibrisolvens xylB gene encoding a novel bifunctional protein with β-d-xylosidase and α-l-arabinofuranosidase activities. Appl Environ Microbiol 57:1227–1234

    PubMed  CAS  Google Scholar 

  122. Van laere KMJ, Beldman G, Voragen GJ (1997) A new arabinofuranohydrolase from Bifidobacterium adolescentis able to remove arabinosyl residue from double substituated xylose units in arabinoxylan. Appl Microbiol Biotechnol 47:231–235

    Article  PubMed  Google Scholar 

  123. Van Laere KMJ, Voragen CHL, Kroef T, Van den Broek LAM, Beldman G, Voragen AGJ (1999) Purification and mode of action of two different arabinoxylan arabinofuranohydrolases from Bifidobacterium adolescentis DSM 20083. Appl Microbiol Biotechnol 51:606–613

    Article  Google Scholar 

  124. Viikari L, Kantelinen A, Sundquist J, Linko M (1994) Xylanases in bleaching-from an idea to the industry. FEMS Microbiol Rev 13:335–350

    Article  CAS  Google Scholar 

  125. Vincent P, Shareck F, Dupont C, Morosoli R, Kluepfel D (1997) New α-l-arabinofuranosidase produced by Streptomyces lividans: cloning and DNA sequence of the abfB gene and characterization of the enzyme. Biochem J 322:845–852

    PubMed  CAS  Google Scholar 

  126. Voragen AGJ, Rombouts FM, Searle-van leeuwen MF, Schols HA, Pilnik W (1988) The degradation of arabinans by endoarabinanase and arabinofuranosidases purified from Aspergillus niger. Food Hydrocolloids 1:423–437

    Article  Google Scholar 

  127. Vorin SG, Baumes RL, Bitteur SM, Gunata ZY, Bayonove CL (1990) Novel monoterpene disaccharide glycosides of Vitis vinifera grapes. J Agric Food Chem 38:1373–1378

    Article  Google Scholar 

  128. Wakabayashi C, Hasegawa H, Murata J, Saiki I (1997) In vivo antimetastatic action of ginseng protopanaxadiol saponins is based on their intestinal bacterial metabolites after oral administration. Oncol Res 9:411–417

    PubMed  CAS  Google Scholar 

  129. Ward OP, Moo-Young M (1989) Degradation of cell wall and related plant polysaccharides. Crit Rev Biotechnol 8:237–274

    Article  PubMed  CAS  Google Scholar 

  130. Weaver J, Whitehead TR, Cotta MA Valentine PC, Salyers AA (1992) Genetic analysis of a locus on the Bacteroides ovatus chromosome which contains xylan utilization genes. Appl Environ Microbiol 58:2764–2770

    PubMed  CAS  Google Scholar 

  131. Whitaker JR (1984) Pectic substances, pectic enzymes and haze formation in fruit juices. Enzyme Microb Technol 6:341–349

    Article  CAS  Google Scholar 

  132. Winterhalter P (1990) Bound terpenoids in the juice of the purple passion fruit (Passiflora edulis Sims). J Agric Food Chem 38:452–455

    Article  CAS  Google Scholar 

  133. Wu P, Kuo M-C, Hartman TG, Rosen RT, Ho C-T (1991) Free glycosidically bound aroma compounds in pineapple (Ananas comosus L. Merr.). J Agric Food Chem 39:170–172

    Article  CAS  Google Scholar 

  134. Yannai T, Sato M (2000) Purification and characterization of novel α-l-arabinofuranosidase form Pichia capsulata X91. Biosci Biotechnol Biochem 64:1181–1188

    Article  PubMed  Google Scholar 

  135. Zaldivar J, Nielsen J, Olsson L (2001) Fuel ethanol production from lignocellulose:a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol 56:17–34

    Article  PubMed  CAS  Google Scholar 

  136. Zechel DL, Withers SG (2000) Glycosidase mechanisms: anatomy of a finely tuned catalyst. Acc Chem Res 33:11–18

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mondher Th. Numan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Numan, M.T., Bhosle, N.B. α-l-Arabinofuranosidases: the potential applications in biotechnology. J IND MICROBIOL BIOTECHNOL 33, 247–260 (2006). https://doi.org/10.1007/s10295-005-0072-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-005-0072-1

Keywords

Navigation