Skip to main content
Log in

Purification and Characterization of Xylanases from the Fungus Chrysoporthe cubensis for Production of Xylooligosaccharides and Fermentable Sugars

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Xylanases from the pathogen fungus Chrysoporthe cubensis were produced under solid state fermentation (SSF) using wheat bran as carbon source. The enzymatic extracts were submitted to ion exchange (Q Sepharose) and gel filtration chromatography methods (Sephadex S-200) for purification. The xylanases were divided into three groups: P1 showed better performance at 60 °C and pH 4.0, P2 at 55 °C and pH 3.0, and P3 at 80 °C and pH 3.0. Oat spelt xylan was the best substrate hydrolyzed by P1 and P3, while beechwood xylan was better degraded by P2. Carboxymethyl cellulose (CMC) and p-nitrophenyl-β-d-xylopyranoside (p-NPβXyl) were not hydrolyzed by any of the xylanases. The K M or K M values, using oat spelt xylan as substrate, were 2.65 mg/mL for P1, 1.81 mg/mL for P2, and 1.18 mg/mL for P3. Xylobiose and xylotriose were the main xylooligosaccharides of oat spelt xylan degradation, indicating that the xylanases act as endo-β-1,4-xylanases. Xylanases also proved to be efficient for hydrolysis of sugarcane bagasse when used as supplement of a commercial cocktail due to the increase of the reducing sugar release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bon, E. P. S., Ferrara, M. A., & Corvo, M. L. (2008). Enzimas em biotecnologia: produção, aplicações e mercado. Rio de Janeiro: Interciência: UFRJ: CAPES: FAPERJ: FCT (Portugal).

    Google Scholar 

  2. Sangkharak, K., Vangsirikul, P., & Janthachat, S. (2011). Isolation of novel cellulase from agricultural soil and application for ethanol production. International Journal of Advanced Biotechnology and Research, 2, 230–239.

    CAS  Google Scholar 

  3. Zhang, J. H., et al. (2011). Comparison of the synergistic action of two thermostable xylanases from GH families 10 and 11 with thermostable cellulases in lignocellulose hydrolysis. Bioresource Technology, 102, 9090–9095.

    Article  CAS  Google Scholar 

  4. Motta, F., Andrade, C., Santana, M. (2013). A review of xylanase production by the fermentation of xylan: classification, characterization and applications. In: Chandel, A. K. E Silva, S. S. (Eds). Sustainable degradation of lignocellulosic biomass—techniques, applications and commercialization: InTech, cap. 10.

  5. Polizeli, M. L. T. M., Rizzatti, A. C. S., Montir, R., Terenzi, H. F., Jorge, J. A., & Amorim, D. S. (2005). Xylanases from fungi: properties and industrial applications. Applied Microbiology and Biotechnology, 67(5), 577–591.

    Article  CAS  Google Scholar 

  6. Biely, P., Vrsanska, M., Tenkanen, M., & Kluepfel, D. (1997). Endo-b-1,4-xylanase families: differences in catalytic properties. Journal of Biotechnology, 151–166.

  7. Kulkarni, N., Shendye, A., & Rao, M. (1999). Molecular and biotechnological aspects of xylanases. FEMS Microbiology Reviews, 23, 411–456.

    Article  CAS  Google Scholar 

  8. Subramaniyan, S., & Prema, P. (2002). Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Critical Reviews in Biotechnology, 22, 33–64.

    Article  CAS  Google Scholar 

  9. Dodd, D., & Cann, I. K. (2009). Enzymatic deconstruction of xylan for biofuel production. Global Change Biology Bioenergy, 18, 2–17.

    Article  Google Scholar 

  10. Butt, M. S., Tahir-Nadeem, M., Ahmad, Z., & Sultan, M. T. (2008). Xylanases in baking industry. Food Technology and Biotechnology, 46(1), 22–31.

    CAS  Google Scholar 

  11. Huang, J., Chen, D., Wei, Y., Wang, Q., Li, Z., Chen, Y., Huang, R. (2014). Direct ethanol production from lignocellulosic sugars and sugarcane bagasse by a recombinant Trichoderma reesei strain HJ48. The Scientific World Journal, ID. 798683.

  12. Buckeridge, M. S., et al. (2012). Ethanol from sugarcane in Brazil: a ‘midway’ strategy for increasing ethanol production while maximizing environmental benefits. Global Change Biology Bioenergy, 4, 119–126.

    Article  CAS  Google Scholar 

  13. Lafond, M., Tauzin, A., Desseaux, V., Bonnin, E., Ajandouz, H., & Giardina, T. (2011). GH10 xylanase D from Penicillium funiculosum: biochemical studies and xylooligosaccharide production. Microbial Cell Factories, 10, 20.

    Article  CAS  Google Scholar 

  14. Fitzpatrick, M., Champagne, P., Cunningham, M. F., & Whitney, R. E. (2010). A biorefinery processing perspective: treatment of lignocellulosic materials for the production of value-added products. Bioresource Technology, 101, 8915–8923.

    Article  CAS  Google Scholar 

  15. Van Den Brink, J., Maitan-Alfenas, G. P., Zou, G., Wang, C., Zhou, Z., Guimarães, V. M., & de Vries, R. P. (2014). Synergistic effect of Aspergillus niger and Trichoderma reesei enzyme sets on the saccharification of wheat straw and sugarcane bagasse. Biotechnology Journal, 9, 1329–1338.

    Article  CAS  Google Scholar 

  16. Falkoski, D. L., Guimarães, V. M., de Almeida, M. N., Alfenas, A. C., Colodette, J. L., & de Rezende, S. T. (2013). Chrysoporthe cubensis: a new source of cellulases and hemicellulases to application in biomass saccharification processes. Bioresource Technology, 130, 296–305.

    Article  CAS  Google Scholar 

  17. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  18. Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  19. Miller, G. L. (1959). Use of dinitrosalicycilic acid reagent for determianiton of reducing sugars. Analytica Chemistry, 31, 426–430.

    Article  CAS  Google Scholar 

  20. Mcllvaine, T. C. (1921). A buffer solution for colorimetric comparison. Journal of Biological Biochemistry, 49, 183–186.

    Google Scholar 

  21. Monti, R., Cardello, L., Custódio, M. F., Goulart, A. J., Sayama, A. H., & Contiero, J. (2003). Production and purification of an endo-1,4-b-xylanase from Humicola grisea var. thermoidea by electroelution. Brazilian Journal of Microbiology, 34(2), 124–128.

    Article  CAS  Google Scholar 

  22. Querido, A. L. S., Coelho, J. L. C., Araujo, E. F., & Chaves-Alves, V. M. (2006). Partial purification and characterization of xylanase produced by Penicillium expansum. Brazilian Archives of Biology and Technology, 49, 474–480.

    Article  Google Scholar 

  23. Kamble, R. D., Jadhav, A. R. (2012). Isolation, purification, and characterization of xylanase produced by a new species of Bacillus in solid state fermentation. International Journal of Microbiology, ID 683193.

  24. Chi, W. J., Park, D. Y., Chang, Y. K., & Hong, S. K. (2012). A novel alkaliphilic xylanase from the newly isolated mesophilic Bacillus sp. mx47: production, purification, and characterization. Applied Biochemistry and Biotechnology, 168(4), 899–909.

    Article  CAS  Google Scholar 

  25. Knob, A., Beitel, S.M., Fortkamp, D., Terrasan, C.R.F., de Almeida, A.F. (2013). Production, purification, and characterization of a major Penicillium glabrum xylanase using brewer’s spent grain as substrate. BioMed Research International, ID 728735.

  26. Zheng, H. C., Sun, M. Z., Meng, L. C., Pei, H. S., Zhang, X. Q., Yan, Z., Zeng, W. H., Zhang, J. S., Hu, J. R., Lu, F. P., & Sun, J. S. (2014). Purification and characterization of a thermostable xylanase from Paenibacillus sp. NF1 and its application in xylooligosaccharides production. Journal of Microbiology and Biotechnology, 24(4), 489–496.

    Article  CAS  Google Scholar 

  27. Shin, K., Jeya, M., Lee, J., & Kim, Y. (2010). Purification and characterization of a thermostable xylanase from Fomitopsis pinicola. Journal of Microbiology and Biotechnology, 20(10), 1415–1423.

    Article  CAS  Google Scholar 

  28. Taibi, Z., Saoudi, B., Boudelaa, M., Trigui, H., Belghith, H., Gargouri, A., & Ladjama, A. (2012). Purification and biochemical characterization of a highly thermostable xylanase from Actinomadura sp. strain cpt20 isolated from poultry compost. Applied Biochemistry and Biotechnology, 166(3), 663–679.

    Article  CAS  Google Scholar 

  29. Vikramathithan, J., Ravikumar, S., Muthuraman, P., Nirmalkumar, G., Shayamala, S., & Srikumar, K. (2012). Purification and biochemical characterization of two major and thermophilic xylanase isoforms (T70 and T90) from xerophytic Opuntia vulgaris plant spp. Cellulose, 19, 1373–1383.

    Article  CAS  Google Scholar 

  30. Gonçalves, T. A., Damásio, A. R., Segato, F., Alvarez, T. M., Bragatto, J., Brenelli, L. B., Citadini, A. P., Murakami, M. T., Ruller, R., Paes Leme, A. F., Prade, R. A., & Squina, F. M. (2012). Functional characterization and synergic action of fungal xylanase and arabinofuranosidase for production of xylooligosaccharides. Bioresource Technology, 119, 293–299.

    Article  Google Scholar 

  31. Wongwisansri, S., Promdonkoy, P., Matetaviparee, P., Roongsawang, N., Eurwilaichitr, L., & Tanapongpipat, S. (2013). High-level production of thermotolerant β-xylosidase of Aspergillus sp. BCC125 in Pichia pastoris: characterization and its application in ethanol production. Bioresource Technology, 132, 410–413.

    Article  CAS  Google Scholar 

  32. Visser, E. M., Falkoski, D. L., de Almeida, M. N., Maitan-Alfenas, G. P., & Guimarães, V. M. (2013). Production and application of an enzyme blend from Chrysoporthe cubensis and Penicillium pinophilum with potential for hydrolysis of sugarcane bagasse. Bioresource Technology, 144, 587–594.

    Article  CAS  Google Scholar 

  33. Verma, D., Anand, A., & Satyanarayana, T. (2013). Thermostable and alkalistable endoxylanase of the extremely thermophilic bacterium Geobacillus thermodenitrificans TSAA1: cloning, expression, characteristics and its applicability in generating xylooligosaccharides and fermentable sugars. Applied Biochemistry and Biotechnology, 170, 119–130.

    Article  CAS  Google Scholar 

  34. Wu, Q., Li, Y., Li, Y., Gao, S., Wang, M., Zhang, T., & Chen, J. (2013). Identification of a novel fungus, Leptosphaerulina chartarum SJTU 59 and characterization of its xylanolytic enzymes. PloS One, 8(9), e73729.

    Article  CAS  Google Scholar 

  35. Goldemberg, J. (2007). Ethanol for a sustainable energy future. Scienc, 315, 808–810.

    Article  CAS  Google Scholar 

  36. Ladisch, M., Mosier, N. S., Kim, Y., Ximenes, E., & Hogsett, D. (2010). Converting cellulose to biofuels. Biofuels, 106(3), 56–63.

    CAS  Google Scholar 

Download references

Acknowledgments

We thank the Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the financial support and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for providing scholarships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela P. Maitan-Alfenas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Sousa Gomes, K., Maitan-Alfenas, G.P., de Andrade, L.G.A. et al. Purification and Characterization of Xylanases from the Fungus Chrysoporthe cubensis for Production of Xylooligosaccharides and Fermentable Sugars. Appl Biochem Biotechnol 182, 818–830 (2017). https://doi.org/10.1007/s12010-016-2364-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2364-5

Keywords

Navigation