Skip to main content
Log in

Synthetic carbohydrate-binding module-endogalacturonase chimeras increase catalytic efficiency and saccharification of lignocellulose residues

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Primary cell walls and middle lamella of higher plants include homogalacturonan, the substrate for polygalacturonases. Seeking to enhance lignocellulose saccharification, chimeras between the endopolygalacturonase I from Chondrostereum (Stereum) purpureum (EndoPG-I) and family 3, 44, and 77 carbohydrate-binding modules (CBMs) from Hungateiclostridium thermocellum (Ht) or Ruminococcus flavefaciens (Rf) were constructed, expressed, and characterized. Chimeras presented similar KM values and pH/temperature optima as unfused EndoPG-I against citrus pectin, kcat/KM values 1.6, 1.7, and 1.3-fold higher for the HtCBM3-EndoPG, HtCBM44-EndoPG, and RtCBM77-EndoPG, respectively. Commercial enzyme cocktail supplementation with HtCBM44-EndoPG and RtCBM77-EndoPG increased reducing sugar release from untreated sugarcane bagasse by 35 and 25%, respectively. All chimeras increased reducing sugar release by 20–25% against orange bagasse compared with EndoPG-I or equimolar EndoPG-I/CBM mixtures. These results show that proximity between plant cell wall components in situ influences CBM-enzyme chimera activity and improves saccharification of lignocellulosic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. IPCC, Masson-Delmotte V, Zhai P et al (2021) Climate Change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change

  2. Adiletta G, Brachi P, Riianova E et al (2020) A simplified biorefinery concept for the valorization of sugar beet pulp: ecofriendly isolation of pectin as a step preceding torrefaction. Waste Biomass Valoriz 11:2721–2733. https://doi.org/10.1007/S12649-019-00582-4/FIGURES/4

    Article  CAS  Google Scholar 

  3. Kumar R, Tabatabaei M, Karimi K, Horváth IS (2016) Recent updates on lignocellulosic biomass derived ethanol - a review. Biofuel Res J 3:347–356. https://doi.org/10.18331/BRJ2016.3.1.4

    Article  CAS  Google Scholar 

  4. Patel A, Shah AR (2021) Integrated lignocellulosic biorefinery: Gateway for production of second generation ethanol and value added products. J Bioresour Bioprod 6:108–128. https://doi.org/10.1016/J.JOBAB.2021.02.001

    Article  CAS  Google Scholar 

  5. Loix C, Huybrechts M, Vangronsveld J et al (2017) Reciprocal interactions between cadmium-induced cell wall responses and oxidative stress in plants. Front Plant Sci 8:1867. https://doi.org/10.3389/FPLS.2017.01867/BIBTEX

    Article  PubMed  PubMed Central  Google Scholar 

  6. Dranca F, Oroian M (2018) Extraction, purification and characterization of pectin from alternative sources with potential technological applications. Food Res Int 113:327–350. https://doi.org/10.1016/J.FOODRES.2018.06.065

    Article  CAS  PubMed  Google Scholar 

  7. Edwards MC, Doran-Peterson J (2012) Pectin-rich biomass as feedstock for fuel ethanol production. Appl Microbiol Biotechnol 95:565–575. https://doi.org/10.1007/S00253-012-4173-2/TABLES/5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Latarullo MBG, Tavares EQP, Maldonado GP et al (2016) Pectins, endopolygalacturonases, and bioenergy. Front Plant Sci 7:1401. https://doi.org/10.3389/FPLS.2016.01401/BIBTEX

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kameshwar AKS, Qin W (2018) Structural and functional properties of pectin and lignin–carbohydrate complexes de-esterases: a review. Bioresour Bioprocess 5:1–16. https://doi.org/10.1186/S40643-018-0230-8/FIGURES/5

    Article  Google Scholar 

  10. Lombard V, GolacondaRamulu H, Drula E et al (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic acids research 42. https://doi.org/10.1093/NAR/GKT1178

  11. Shimizu T, Miyairi K, Okuno T (2000) Determination of glycosylation sites, disulfide bridges, and the C-terminus of Stereum purpureum mature endopolygalacturonase I by electrospray ionization mass spectrometry. Eur J Biochem 267:2380–2389. https://doi.org/10.1046/J.1432-1327.2000.01249.X

    Article  CAS  PubMed  Google Scholar 

  12. Shimizu T, Shibata H, Araya T et al (2005) Expression, purification, and crystallization of endopolygalacturonase from a pathogenic fungus, Stereum purpureum, in Escherichia coli. Protein Expr Purif 44:130–135. https://doi.org/10.1016/J.PEP.2005.06.001

    Article  CAS  PubMed  Google Scholar 

  13. Hasui Y, Fukui Y, Kikuchi J et al (1998) Isolation, characterization, and sugar chain structure of endoPG Ia, Ib and Ic from Stereum purpureum. Biosci Biotechnol Biochem 62:852–857. https://doi.org/10.1271/BBB.62.852

    Article  CAS  PubMed  Google Scholar 

  14. Ogawa S, Shimizu T, Ohki H et al (2009) Expression, purification, and analyses of glycosylation and disulfide bonds of Stereum purpureum endopolygalacturonase I in Pichia pastoris. Protein Expr Purif 65:15–22. https://doi.org/10.1016/J.PEP.2008.12.014

    Article  CAS  PubMed  Google Scholar 

  15. Shimizu T, Nakatsu T, Miyairi K et al (2002) Active-site architecture of endopolygalacturonase I from Stereum purpureum revealed by crystal structures in native and ligand-bound forms at atomic resolution. Biochemistry 41:6651–6659. https://doi.org/10.1021/BI025541A

    Article  CAS  PubMed  Google Scholar 

  16. Ogawa S, Shimizu T, Kimura T et al (2010) The pro-form of Stereum purpureum endopolygalacturonase I is inactivated by a pro-sequence in the C-terminal region. Biosci Biotechnol Biochem 74:558–562. https://doi.org/10.1271/BBB.90754

    Article  CAS  PubMed  Google Scholar 

  17. Furtado GP, Carli S, Meleiro LP et al (2021) Enhanced hydrolytic efficiency of an engineered CBM11-glucanase enzyme chimera against barley β-d-glucan extracts. Food Chem 365:130460. https://doi.org/10.1016/J.FOODCHEM.2021.130460

    Article  CAS  PubMed  Google Scholar 

  18. Reddy Chichili VP, Kumar V, Sivaraman J (2013) Linkers in the structural biology of protein–protein interactions. Protein Sci 22:153. https://doi.org/10.1002/PRO.2206

    Article  CAS  PubMed  Google Scholar 

  19. Singh RK, Tiwari MK, Singh R, Lee JK (2013) From protein engineering to immobilization: promising strategies for the upgrade of industrial enzymes. Int J Mol Sci 14:1232. https://doi.org/10.3390/IJMS14011232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hervé C, Rogowski A, Blake AW et al (2010) Carbohydrate-binding modules promote the enzymatic deconstruction of intact plant cell walls by targeting and proximity effects. Proc Natl Acad Sci U S A 107:15293–15298. https://doi.org/10.1073/PNAS.1005732107/-/DCSUPPLEMENTAL

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  21. Zhang X, Rogowski A, Zhao L et al (2014) Understanding how the complex molecular architecture of mannan-degrading hydrolases contributes to plant cell wall degradation *. J Biol Chem 289:2002–2012. https://doi.org/10.1074/JBC.M113.527770

    Article  CAS  PubMed  Google Scholar 

  22. Santos CR, Paiva JH, Sforça ML et al (2012) Dissecting structure-function-stability relationships of a thermostable GH5-CBM3 cellulase from Bacillus subtilis 168. Biochem J 441:95–104. https://doi.org/10.1042/BJ20110869

    Article  CAS  PubMed  Google Scholar 

  23. Furtado GP, Santos CR, Cordeiro RL et al (2015) Enhanced xyloglucan-specific endo-β-1,4-glucanase efficiency in an engineered CBM44-XegA chimera. Appl Microbiol Biotechnol 99:5095–5107. https://doi.org/10.1007/S00253-014-6324-0

    Article  CAS  PubMed  Google Scholar 

  24. Quan J, Tian J (2014) Circular polymerase extension cloning. Methods Mol Biol 1116:103–117. https://doi.org/10.1007/978-1-62703-764-8_8

    Article  CAS  PubMed  Google Scholar 

  25. Glynou K, Ioannou PC, Christopoulos TK (2003) One-step purification and refolding of recombinant photoprotein aequorin by immobilized metal-ion affinity chromatography. Protein Expr Purif 27:384–390. https://doi.org/10.1016/S1046-5928(02)00614-9

    Article  CAS  PubMed  Google Scholar 

  26. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. https://doi.org/10.1038/227680a0

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Read SM, Northcote DH (1981) Minimization of variation in the response to different proteins of the Coomassie blue G dye-binding assay for protein. Anal Biochem 116:53–64. https://doi.org/10.1016/0003-2697(81)90321-3

    Article  CAS  PubMed  Google Scholar 

  28. Tomme P, Boraston A, Kormos JM et al (2000) Affinity electrophoresis for the identification and characterization of soluble sugar binding by carbohydrate-binding modules. Enzyme Microb Technol 27:453–458. https://doi.org/10.1016/S0141-0229(00)00246-5

    Article  CAS  PubMed  Google Scholar 

  29. Micsonai A, Wien F, Bulyáki É et al (2018) BeStSel: a web server for accurate protein secondary structure prediction and fold recognition from the circular dichroism spectra. Nucleic Acids Res 46:W315–W322. https://doi.org/10.1093/NAR/GKY497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. McIlvaine TC (1921) A buffer solution for colorimetric comparison. J Biol Chem 49:183–186. https://doi.org/10.1016/S0021-9258(18)86000-8

    Article  CAS  Google Scholar 

  31. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428. https://doi.org/10.1021/AC60147A030

    Article  CAS  Google Scholar 

  32. Leone FA, Baranauskas JA, Furriel RPM, Borin IA (2005) SigrafW: an easy-to-use program for fitting enzyme kinetic data. Biochem Mol Biol Educ 33:399–403. https://doi.org/10.1002/BMB.2005.49403306399

    Article  CAS  PubMed  Google Scholar 

  33. de Souza AP, Leite DCC, Pattathil S et al (2013) Composition and structure of sugarcane cell wall polysaccharides: implications for second-generation bioethanol production. Bioenergy Res 6:564–579. https://doi.org/10.1007/S12155-012-9268-1/FIGURES/6

    Article  CAS  Google Scholar 

  34. Carli S, Salgado JCS, Meleiro LP, Ward RJ (2021) Covalent immobilization of Chondrostereum purpureum endopolygalacturonase on ferromagnetic nanoparticles: catalytic properties and biotechnological application. Appl Biochem Biotechnol. https://doi.org/10.1007/S12010-021-03688-5

    Article  PubMed  Google Scholar 

  35. Carli S, Meleiro LP, Ward RJ (2019) Biochemical and kinetic characterization of the recombinant GH28 Stereum purpureum endopolygalacturonase and its biotechnological application. Int J Biol Macromol 137:469–474. https://doi.org/10.1016/J.IJBIOMAC.2019.06.165

    Article  CAS  PubMed  Google Scholar 

  36. Laskowski RA, Jabłońska J, Pravda L et al (2018) PDBsum: structural summaries of PDB entries. Protein Sci 27:129–134. https://doi.org/10.1002/PRO.3289

    Article  CAS  PubMed  Google Scholar 

  37. Grishina IB, Woody RW (1994) Contributions of tryptophan side chains to the circular dichroism of globular proteins: exciton couplets and coupled oscillators. Faraday Discuss 99:245–262. https://doi.org/10.1039/FD9949900245

    Article  ADS  CAS  Google Scholar 

  38. Cattaneo C, Cesaro P, Spertino S et al (2018) Enhanced features of Dictyoglomus turgidum cellulase A engineered with carbohydrate binding module 11 from Clostridium thermocellum. Sci Rep 8:4402. https://doi.org/10.1038/s41598-018-22769-w

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fonseca-Maldonado R, Meleiro LP, Mendes LFS et al (2017) Lignocellulose binding of a Cel5A-RtCBM11 chimera with enhanced β-glucanase activity monitored by electron paramagnetic resonance. Biotechnol Biofuels 10:1–11. https://doi.org/10.1186/S13068-017-0964-0/FIGURES/5

    Article  Google Scholar 

  40. Akhani RC, Patel AT, Patel MJ et al (2017) Ricin super family carbohydrate binding module 13 containing pectate lyase 1B from Bacillus licheniformis display hyper thermal stability. Asian J Biochem 12:36–43. https://doi.org/10.3923/AJB.2017.36.43

    Article  CAS  Google Scholar 

  41. Selvendran RR, Ryden P (1990) Isolation and analysis of plant cell walls. Methods Plant Biochem 2:549–579. https://doi.org/10.1016/B978-0-12-461012-5.50022-7

    Article  CAS  Google Scholar 

  42. Ajuong EMA, Breese MC (1998) Fourier transform infrared characterization of Pai wood (Afzelia africana Smith) extractives. Holz als Roh- und Werkstoff 56:139–142. https://doi.org/10.1007/S001070050285

    Article  CAS  Google Scholar 

  43. Neves PV, Pitarelo AP, Ramos LP (2016) Production of cellulosic ethanol from sugarcane bagasse by steam explosion: effect of extractives content, acid catalysis and different fermentation technologies. Bioresour Technol 208:184–194. https://doi.org/10.1016/J.BIORTECH.2016.02.085

    Article  CAS  PubMed  Google Scholar 

  44. Arantes V, Saddler JN (2010) Access to cellulose limits the efficiency of enzymatic hydrolysis: the role of amorphogenesis. Biotechnol Biofuels 3:1–11. https://doi.org/10.1186/1754-6834-3-4/FIGURES/2

    Article  Google Scholar 

  45. Li J, Zhou P, Liu H et al (2014) Synergism of cellulase, xylanase, and pectinase on hydrolyzing sugarcane bagasse resulting from different pretreatment technologies. Biores Technol 155:258–265. https://doi.org/10.1016/J.BIORTECH.2013.12.113

    Article  CAS  Google Scholar 

  46. Delabona PdaS, Cota J, Hoffmam ZB et al (2013) Understanding the cellulolytic system of Trichoderma harzianum P49P11 and enhancing saccharification of pretreated sugarcane bagasse by supplementation with pectinase and α-L-arabinofuranosidase. Bioresour Technol 131:500–507. https://doi.org/10.1016/J.BIORTECH.2012.12.105

    Article  PubMed  Google Scholar 

  47. Thite VS, Nerurkar AS (2018) Physicochemical characterization of pectinase activity from Bacillus spp. and their accessory role in synergism with crude xylanase and commercial cellulase in enzyme cocktail mediated saccharification of agrowaste biomass. J Appl Microbiol 124:1147–1163. https://doi.org/10.1111/JAM.13718

    Article  CAS  PubMed  Google Scholar 

  48. Awan AT, Tsukamoto J, Tasic L (2013) Orange waste as a biomass for 2G-ethanol production using low cost enzymes and co-culture fermentation. RSC Adv 3:25071–25078. https://doi.org/10.1039/C3RA43722A

    Article  ADS  CAS  Google Scholar 

  49. Cypriano DZ, da Silva LL, Tasic L (2018) High value-added products from the orange juice industry waste. Waste Manage 79:71–78. https://doi.org/10.1016/J.WASMAN.2018.07.028

    Article  CAS  Google Scholar 

  50. Lionetti V, Francocci F, Ferrari S et al (2010) Engineering the cell wall by reducing de-methyl-esterified homogalacturonan improves saccharification of plant tissues for bioconversion. Proc Natl Acad Sci 107:616–621. https://doi.org/10.1073/PNAS.0907549107

    Article  ADS  CAS  PubMed  Google Scholar 

  51. Gama R, van Dyk JS, Pletschke BI (2015) Optimisation of enzymatic hydrolysis of apple pomace for production of biofuel and biorefinery chemicals using commercial enzymes. 3 Biotech 5:1075. https://doi.org/10.1007/S13205-015-0312-7

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank André Justino for technical assistance.

Funding

This work was supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) grants 2017/13734–3 (SC), 2016/17582–0 (LPM), 2019/21989–7 (JCSS), 2016/24139–6 (RJW), CNPq grant 305788/2017–5 (RJW) and the National Institute of Science and Technology of Bioethanol (INCT-Bioethanol) (FAPESP 2011/57908–6 and 2014/50884–5, CNPq 574002/2008–1 and 465319/2014–9).

Author information

Authors and Affiliations

Authors

Contributions

Sibeli Carli, data curation, formal analysis, investigation, methodology, figure preparation, visualization, and writing—original draft; Luana Parras Meleiro, data curation, formal analysis, investigation, methodology, figure preparation, visualization, and writing—review and editing; José Carlos Santos Salgado, data curation, formal analysis, investigation, methodology, figure preparation, visualization, and writing—original draft; and Richard John Ward, conceptualization, funding acquisition, project administration, resource management, team supervision, and writing—review and editing.

Corresponding author

Correspondence to Richard John Ward.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1435 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carli, S., Parras Meleiro, L., Salgado, J.C.S. et al. Synthetic carbohydrate-binding module-endogalacturonase chimeras increase catalytic efficiency and saccharification of lignocellulose residues. Biomass Conv. Bioref. 14, 6369–6380 (2024). https://doi.org/10.1007/s13399-022-02716-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02716-6

Keywords

Navigation