Skip to main content
Log in

Unraveling Non-conventional Yeast Pichia: An Emerging Lignocellulosic Ethanologenic and Exoelectrogenic Yeast

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Several non-conventional yeasts are emerging as potential candidate with an ability to produce lignocellulosic ethanol along with other biofuels. Capability to effectively ferment a variety of sugars especially, which are released during lignocellulosic biomass degradation, makes Pichia an organism of choice. By utilizing five carbon sugars along with the six carbon sugars, and generating biofuels with high yields, Pichia is a possible complement with conventional yeasts. Recent research has indicated that these yeasts may have the ability to function as an exoelectrogen, generating electrical energy by extracellular electron transfer. The metabolic pathways and the important products and by-products produced in electrochemical bioreactors by using lignocellulosic hydrolysate and the formation of ethanol and other biofuels are reviewed in the present study. Additionally, it emphasizes Pichia’s potential to be used as a flexible biocatalyst for the synthesis of value-added compounds and bioremediation in microbial fuel cells. The article further highlights some gaps and possibilities for future engineering and optimization of Pichia strains for large-scale production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Manirethan V, Joy J, Varghese RT, Uddandarao P (2022) Municipal solid waste for sustainable production of biofuels and value-added products from biorefinery BT - zero waste biorefinery. In: Garg VK, Labhsetwar NK, Singh A (eds) Nandabalan YK. Springer Nature Singapore, Singapore, pp 425–447

    Google Scholar 

  2. Gielen D, Boshell F, Saygin D et al (2019) The role of renewable energy in the global energy transformation. Energy Strateg Rev 24:38–50. https://doi.org/10.1016/j.esr.2019.01.006

    Article  Google Scholar 

  3. Wheeldon I, Christopher P, Blanch H (2017) Integration of heterogeneous and biochemical catalysis for production of fuels and chemicals from biomass. Curr Opin Biotechnol 45:127–135. https://doi.org/10.1016/j.copbio.2017.02.019

    Article  CAS  PubMed  Google Scholar 

  4. Adegboye MF, Ojuederie OB, Talia PM, Babalola OO (2021) Bioprospecting of microbial strains for biofuel production: metabolic engineering, applications, and challenges. Biotechnol Biofuels 14:5. https://doi.org/10.1186/s13068-020-01853-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Martien JI, Amador-Noguez D (2017) Recent applications of metabolomics to advance microbial biofuel production. Curr Opin Biotechnol 43:118–126. https://doi.org/10.1016/j.copbio.2016.11.006

    Article  CAS  PubMed  Google Scholar 

  6. Bhatia SK, Kim S-H, Yoon J-J, Yang Y-H (2017) Current status and strategies for second generation biofuel production using microbial systems. Energy Convers Manag 148:1142–1156. https://doi.org/10.1016/j.enconman.2017.06.073

    Article  CAS  Google Scholar 

  7. Malode SJ, Prabhu KK, Mascarenhas RJ et al (2021) Recent advances and viability in biofuel production. Energy Convers Manag X 10:100070. https://doi.org/10.1016/j.ecmx.2020.100070

    Article  CAS  Google Scholar 

  8. Srivastava RK (2019) Bio-energy production by contribution of effective and suitable microbial system. Mater Sci Energy Technol 2:308–318. https://doi.org/10.1016/j.mset.2018.12.007

    Article  Google Scholar 

  9. Haq IU, Qaisar K, Nawaz A et al (2021) Advances in valorization of lignocellulosic biomass towards energy generation. Catalysts 11:309. https://doi.org/10.3390/catal11030309

    Article  CAS  Google Scholar 

  10. Rezania S, Oryani B, Cho J et al (2020) Different pretreatment technologies of lignocellulosic biomass for bioethanol production: an overview. Energy 199:117457. https://doi.org/10.1016/j.energy.2020.117457

    Article  CAS  Google Scholar 

  11. Khan MFS, Akbar M, Xu Z, Wang H (2021) A review on the role of pretreatment technologies in the hydrolysis of lignocellulosic biomass of corn stover. Biomass and Bioenergy 155:106276. https://doi.org/10.1016/j.biombioe.2021.106276

    Article  CAS  Google Scholar 

  12. Raud M, Kikas T, Sippula O, Shurpali NJ (2019) Potentials and challenges in lignocellulosic biofuel production technology. Renew Sustain Energy Rev 111:44–56. https://doi.org/10.1016/j.rser.2019.05.020

    Article  CAS  Google Scholar 

  13. Rastogi M, Shrivastava S (2017) Recent advances in second generation bioethanol production: an insight to pretreatment, saccharification and fermentation processes. Renew Sustain Energy Rev 80:330–340. https://doi.org/10.1016/j.rser.2017.05.225

    Article  Google Scholar 

  14. Rodionova MV, Bozieva AM, Zharmukhamedov SK et al (2022) A comprehensive review on lignocellulosic biomass biorefinery for sustainable biofuel production. Int J Hydrogen Energy 47:1481–1498. https://doi.org/10.1016/j.ijhydene.2021.10.122

    Article  CAS  Google Scholar 

  15. Voidarou C, Antoniadou Μ, Rozos G et al (2021) Fermentative foods: microbiology, biochemistry, potential human health benefits and public health issues. Foods 10:69. https://doi.org/10.3390/foods10010069

    Article  CAS  Google Scholar 

  16. Lamichhane G, Acharya A, Poudel DK et al (2021) Recent advances in bioethanol production from lignocellulosic biomass. Int J Green Energy 18:731–744. https://doi.org/10.1080/15435075.2021.1880910

    Article  CAS  Google Scholar 

  17. Harner NK, Wen X, Bajwa PK et al (2015) Genetic improvement of native xylose-fermenting yeasts for ethanol production. J Ind Microbiol Biotechnol 42:1–20. https://doi.org/10.1007/s10295-014-1535-z

    Article  CAS  PubMed  Google Scholar 

  18. Kumar B, Agrawal K, Bhardwaj N et al (2018) Advances in concurrent bioelectricity generation and bioremediation through microbial fuel cells. In: Sivasankar V, Mylsamy P, Omine K (eds) Microbial Fuel Cell Technology for Bioelectricity. Springer International Publishing, Cham, pp 211–239

    Google Scholar 

  19. Geng BY, Cao LY, Li F et al (2020) Potential of Zymomonas mobilis as an electricity producer in ethanol production. Biotechnol Biofuels 13:1–11. https://doi.org/10.1186/s13068-020-01672-5

    Article  CAS  Google Scholar 

  20. Liu CG, Xiao Y, Xia XX et al (2019) Cellulosic ethanol production: progress, challenges and strategies for solutions. Biotechnol Adv 37:491–504

    Article  CAS  PubMed  Google Scholar 

  21. Oon YL, Ong SA, Ho LN et al (2020) Constructed wetland–microbial fuel cell for azo dyes degradation and energy recovery: influence of molecular structure, kinetics, mechanisms and degradation pathways. Sci Total Environ 720:137370. https://doi.org/10.1016/j.scitotenv.2020.137370

    Article  CAS  PubMed  Google Scholar 

  22. Yuan J, Liu S, Jia L et al (2020) Co-generation system of bioethanol and electricity with microbial fuel cell technology. Energy Fuels 34:6414–6422. https://doi.org/10.1021/acs.energyfuels.0c00749

    Article  CAS  Google Scholar 

  23. Shrivastava A, Sharma RK (2022) Lignocellulosic biomass based microbial fuel cells: Performance and applications. J Clean Prod 361:132269. https://doi.org/10.1016/j.jclepro.2022.132269

    Article  CAS  Google Scholar 

  24. Prathiba S, Kumar PS, Vo D-VN (2022) Recent advancements in microbial fuel cells: a review on its electron transfer mechanisms, microbial community, types of substrates and design for bio-electrochemical treatment. Chemosphere 286:131856. https://doi.org/10.1016/j.chemosphere.2021.131856

    Article  CAS  PubMed  Google Scholar 

  25. Bolognesi S, Cecconet D, Capodaglio AG (2020) 5 - Agro-industrial wastewater treatment in microbial fuel cells. In: Abbassi R, Yadav AK, Khan F, Garaniya V (eds) Integrated microbial fuel cells for wastewater treatment. Butterworth-Heinemann, pp 93–133

    Chapter  Google Scholar 

  26. Goers L, Freemont P, Polizzi KM (2014) Co-culture systems and technologies: taking synthetic biology to the next level. J R Soc Interface 11:20140065. https://doi.org/10.1098/rsif.2014.0065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pal M, Sharma RK (2020) Development of wheat straw based catholyte for power generation in microbial fuel cell. Biomass Bioenergy 138:105591. https://doi.org/10.1016/j.biombioe.2020.105591

    Article  CAS  Google Scholar 

  28. Islam MA, Ethiraj B, Cheng CK et al (2018) An insight of synergy between Pseudomonas aeruginosa and Klebsiella variicola in a microbial fuel cell. ACS Sustain Chem Eng 6:4130–4137. https://doi.org/10.1021/acssuschemeng.7b04556

    Article  CAS  Google Scholar 

  29. Islam MA, Ethiraj B, Cheng CK et al (2018) Enhanced current generation using mutualistic interaction of yeast-bacterial coculture in dual chamber microbial fuel Cell. Ind Eng Chem Res 57:813–821. https://doi.org/10.1021/acs.iecr.7b01855

    Article  CAS  Google Scholar 

  30. Qin W, Wang C, Ma Y et al (2020) Microbe-mediated extracellular and intracellular mineralization: environmental, industrial, and biotechnological applications. Adv Mater 32:1907833. https://doi.org/10.1002/adma.201907833

    Article  CAS  Google Scholar 

  31. Wagner JM, Alper HS (2016) Synthetic biology and molecular genetics in non-conventional yeasts: current tools and future advances. Fungal Genet Biol 89:126–136. https://doi.org/10.1016/j.fgb.2015.12.001

    Article  CAS  PubMed  Google Scholar 

  32. Sanna ML, Zara S, Zara G et al (2012) Pichia fermentans dimorphic changes depend on the nitrogen source. Fungal Biol 116:769–777. https://doi.org/10.1016/j.funbio.2012.04.008

    Article  CAS  PubMed  Google Scholar 

  33. Cai P, Duan X, Wu X et al (2021) Recombination machinery engineering facilitates metabolic engineering of the industrial yeast Pichia pastoris. Nucleic Acids Res 49:7791–7805. https://doi.org/10.1093/nar/gkab535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lekshmi SM, Madhavan Nampoothiri K (2022) An overview of the metabolically engineered strains and innovative processes used for the value addition of biomass derived xylose to xylitol and xylonic acid. Bioresour Technol 345:126. https://doi.org/10.1016/j.biortech.2021.126548

    Article  CAS  Google Scholar 

  35. Favaro L, Jansen T, van Zyl WH (2019) Exploring industrial and natural Saccharomyces cerevisiae strains for the bio-based economy from biomass: the case of bioethanol. Crit Rev Biotechnol 39:800–816. https://doi.org/10.1080/07388551.2019.1619157

    Article  PubMed  Google Scholar 

  36. Cunha JT, Gomes DG, Romaní A et al (2021) Cell surface engineering of Saccharomyces cerevisiae for simultaneous valorization of corn cob and cheese whey via ethanol production. Energy Convers Manag 243:114359. https://doi.org/10.1016/j.enconman.2021.114359

    Article  CAS  Google Scholar 

  37. Luque L, Westerhof R, Van Rossum G et al (2014) Pyrolysis based bio-refinery for the production of bioethanol from demineralized ligno-cellulosic biomass. Bioresour Technol 161:20–28. https://doi.org/10.1016/j.biortech.2014.03.009

    Article  CAS  PubMed  Google Scholar 

  38. Zabed H, Sahu JN, Boyce AN, Faruq G (2016) Fuel ethanol production from lignocellulosic biomass: an overview on feedstocks and technological approaches. Renew Sustain Energy Rev 66:751–774. https://doi.org/10.1016/j.rser.2016.08.038

    Article  CAS  Google Scholar 

  39. Khonngam T, Salakkam A (2019) Bioconversion of sugarcane bagasse and dry spent yeast to ethanol through a sequential process consisting of solid-state fermentation, hydrolysis, and submerged fermentation. Biochem Eng J 150:107284. https://doi.org/10.1016/j.bej.2019.107284

    Article  CAS  Google Scholar 

  40. Ferreira RG, Azzoni AR, Freitas S (2021) On the production cost of lignocellulose-degrading enzymes. Biofuels, Bioprod Biorefining 15:85–99. https://doi.org/10.1002/bbb.2142

    Article  CAS  Google Scholar 

  41. Knudsen JD, Rønnow B (2020) Extended fed-batch fermentation of a C5/C6 optimised yeast strain on wheat straw hydrolysate using an online refractive index sensor to measure the relative fermentation rate. Sci Rep 10:6705. https://doi.org/10.1038/s41598-020-63626-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Portero Barahona P, Bastidas Mayorga B, Martín-Gil J et al (2020) Cellulosic Ethanol: improving cost efficiency by coupling semi-continuous fermentation and simultaneous saccharification strategies. Processes 8:1459. https://doi.org/10.3390/pr8111459

    Article  CAS  Google Scholar 

  43. Brindhadevi K, Shanmuganathan R, Pugazhendhi A et al (2021) Biohydrogen production using horizontal and vertical continuous stirred tank reactor- a numerical optimization. Int J Hydrogen Energy 46:11305–11312. https://doi.org/10.1016/j.ijhydene.2020.06.155

    Article  CAS  Google Scholar 

  44. Carpio RR, Secchi SG, Barros RO et al (2022) Techno-economic evaluation of second-generation ethanol from sugarcane bagasse: Commercial versus on-site produced enzymes and use of the xylose liquor. J Clean Prod 369:133340. https://doi.org/10.1016/j.jclepro.2022.133340

    Article  CAS  Google Scholar 

  45. Vohra M, Manwar J, Manmode R et al (2014) Bioethanol production: feedstock and current technologies. J Environ Chem Eng 2:573–584. https://doi.org/10.1016/j.jece.2013.10.013

    Article  CAS  Google Scholar 

  46. Wirawan F, Cheng CL, Lo YC et al (2020) Continuous cellulosic bioethanol co-fermentation by immobilized Zymomonas mobilis and suspended Pichia stipitis in a two-stage process. Appl Energy 266:114871. https://doi.org/10.1016/j.apenergy.2020.114871

    Article  CAS  Google Scholar 

  47. Olguin-Maciel E, Singh A, Chable-Villacis R et al (2020) Consolidated bioprocessing, an innovative strategy towards sustainability for biofuels production from crop residues: An Overview. Agronomy 10:1834. https://doi.org/10.3390/agronomy10111834

    Article  CAS  Google Scholar 

  48. Baruah J, Nath BK, Sharma R et al (2018) Recent Trends in the pretreatment of lignocellulosic biomass for value-added products. Front Energy Res 6:141. https://doi.org/10.3389/fenrg.2018.00141

    Article  Google Scholar 

  49. Liu CG, Li K, Wen Y, et al (2019) Bioethanol: new opportunities for an ancient product. In: Advances in Bioenergy, vol 4. Elsevier, pp 1–34. https://doi.org/10.1016/bs.aibe.2018.12.002

  50. Tondro H, Musivand S, Zilouei H et al (2020) Biological production of hydrogen and acetone- butanol-ethanol from sugarcane bagasse and rice straw using co-culture of Enterobacter aerogenes and Clostridium acetobutylicum. Biomass and Bioenergy 142:105818. https://doi.org/10.1016/j.biombioe.2020.105818

    Article  CAS  Google Scholar 

  51. Sjulander N, Kikas T (2020) Origin, Impact and control of lignocellulosic inhibitors in bioethanol production—a review. Energies 13:4751. https://doi.org/10.3390/en13184751

    Article  CAS  Google Scholar 

  52. Lu H, Yadav V, Zhong M et al (2022) Bioengineered microbial platforms for biomass-derived biofuel production – a review. Chemosphere 288:132528. https://doi.org/10.1016/j.chemosphere.2021.132528

    Article  CAS  PubMed  Google Scholar 

  53. Raghukumar S (2017) Fungi: characteristics and classification. Fungi in Coastal and Oceanic Marine Ecosystems: Marine Fungi. Springer International Publishing, Cham, pp 1–15

    Chapter  Google Scholar 

  54. Labbani F-ZK, Turchetti B, Bennamoun L et al (2015) A novel killer protein from Pichia kluyveri isolated from an Algerian soil: purification and characterization of its in vitro activity against food and beverage spoilage yeasts. Antonie Van Leeuwenhoek 107:961–970. https://doi.org/10.1007/s10482-015-0388-4

    Article  CAS  PubMed  Google Scholar 

  55. Hubenova Y, Mitov M (2015) Extracellular electron transfer in yeast-based biofuel cells: A review. Bioelectrochemistry 106:177–185. https://doi.org/10.1016/j.bioelechem.2015.04.001

    Article  CAS  PubMed  Google Scholar 

  56. Sarma H, Bhattacharyya PN, Jadhav DA et al (2021) Fungal-mediated electrochemical system: Prospects, applications and challenges. Curr Res Microb Sci 2:100041. https://doi.org/10.1016/j.crmicr.2021.100041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shrivastava A, Sharma RK (2022) Evaluation of co-culture system to produce ethanol and electricity from wheat straw hydrolysate using Saccharomyces cerevisiae and Pichia fermentans. Biomass Convers Biorefinery (In Press). https://doi.org/10.1007/s13399-022-02914-2

  58. Sekrecka-Belniak A, Toczyłowska-Maminska R (2018) Fungi-based microbial fuel cells. Energies 11:2827. https://doi.org/10.3390/en11102827

    Article  CAS  Google Scholar 

  59. Ulya D, Indri Astuti R, Meryandini A (2021) The ethanol production activity of indigenous thermotolerant yeast Pichia kudriavzevii 1P4. Microbiol Indones 14:1. https://doi.org/10.5454/mi.14.4.1

    Article  Google Scholar 

  60. Hoppert L, Kölling R, Einfalt D (2022) Investigation of stress tolerance of Pichia kudriavzevii for high gravity bioethanol production from steam–exploded wheat straw hydrolysate. Bioresour Technol 364:128079. https://doi.org/10.1016/j.biortech.2022.128079

    Article  CAS  PubMed  Google Scholar 

  61. Zha Y, Hossain AH, Tobola F et al (2013) Pichia anomala 29X: a resistant strain for lignocellulosic biomass hydrolysate fermentation. FEMS Yeast Res 13:609–617. https://doi.org/10.1111/1567-1364.12062

    Article  CAS  PubMed  Google Scholar 

  62. Günan Yücel H, Aksu Z (2015) Ethanol fermentation characteristics of Pichia stipitis yeast from sugar beet pulp hydrolysate: use of new detoxification methods. Fuel 158:793–799. https://doi.org/10.1016/j.fuel.2015.06.016

    Article  CAS  Google Scholar 

  63. Nandal P, Sharma S, Arora A (2020) Bioprospecting non-conventional yeasts for ethanol production from rice straw hydrolysate and their inhibitor tolerance. Renew Energy 147:1694–1703. https://doi.org/10.1016/j.renene.2019.09.067

    Article  CAS  Google Scholar 

  64. Prasad S, Kumar S, Yadav KK et al (2020) Screening and evaluation of cellulytic fungal strains for saccharification and bioethanol production from rice residue. Energy 190:116422. https://doi.org/10.1016/j.energy.2019.116422

    Article  CAS  Google Scholar 

  65. Koti S, Govumoni SP, Gentela J, Venkateswar Rao L (2016) Enhanced bioethanol production from wheat straw hemicellulose by mutant strains of pentose fermenting organisms Pichia stipitis and Candida shehatae. Springerplus 5:1545. https://doi.org/10.1186/s40064-016-3222-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tesfaw A, Oner ET, Assefa F (2021) Optimization of ethanol production using newly isolated ethanologenic yeasts. Biochem Biophys Reports 25:100886. https://doi.org/10.1016/j.bbrep.2020.100886

    Article  CAS  Google Scholar 

  67. Dong C, Qiao J, Wang X et al (2020) Engineering Pichia pastoris with surface-display minicellulosomes for carboxymethyl cellulose hydrolysis and ethanol production. Biotechnol Biofuels 13:108. https://doi.org/10.1186/s13068-020-01749-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhang Y, Wang C, Wang L et al (2017) Direct bioethanol production from wheat straw using xylose/glucose co-fermentation by co-culture of two recombinant yeasts. J Ind Microbiol Biotechnol 44:453–464. https://doi.org/10.1007/s10295-016-1893-9

    Article  CAS  PubMed  Google Scholar 

  69. Lin TH, Guo GL, Hwang WS, Huang SL (2016) The addition of hydrolyzed rice straw in xylose fermentation by Pichia stipitis to increase bioethanol production at the pilot-scale. Biomass Bioenerg 91:204–209. https://doi.org/10.1016/j.biombioe.2016.05.012

    Article  CAS  Google Scholar 

  70. Qian X, Chen L, Sui Y et al (2020) Biotechnological potential and applications of microbial consortia. Biotechnol Adv 40:107500. https://doi.org/10.1016/j.biotechadv.2019.107500

    Article  PubMed  Google Scholar 

  71. Richardson TL, Harner NK, Bajwa PK, et al (2011) Approaches To deal with toxic inhibitors during fermentation of lignocellulosic substrates. In: Sustainable Production of Fuels, Chemicals, and Fibers from Forest Biomass. Chapter 7, pp 171–202, American Chemical Society. https://doi.org/10.1021/bk-2011-1067.ch007

  72. Hanly TJ, Henson MA (2013) Dynamic metabolic modeling of a microaerobic yeast co-culture: predicting and optimizing ethanol production from glucose/xylose mixtures. Biotechnol Biofuels 6:44. https://doi.org/10.1186/1754-6834-6-44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Cai P, Wu X, Deng J et al (2022) Methanol biotransformation toward high-level production of fatty acid derivatives by engineering the industrial yeast Pichia pastoris. Proc Natl Acad Sci 119:e2201711119. https://doi.org/10.1073/pnas.2201711119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Guo F, Dai Z, Peng W et al (2021) Metabolic engineering of Pichia pastoris for malic acid production from methanol. Biotechnol Bioeng 118:357–371. https://doi.org/10.1002/bit.27575

    Article  CAS  PubMed  Google Scholar 

  75. Prabhu AA, Bosakornranut E, Amraoui Y et al (2020) Enhanced xylitol production using non-detoxified xylose rich pre-hydrolysate from sugarcane bagasse by newly isolated Pichia fermentans. Biotechnol Biofuels 13:1–5. https://doi.org/10.1186/s13068-020-01845-2

    Article  CAS  Google Scholar 

  76. Gao J, Xu J, Zuo Y et al (2022) Synthetic Biology toolkit for marker-less integration of multigene pathways into Pichia pastoris via CRISPR/Cas9. ACS Synth Biol 11:623–633. https://doi.org/10.1021/acssynbio.1c00307

    Article  CAS  PubMed  Google Scholar 

  77. Zhang Q, Wang X, Luo H et al (2022) Metabolic engineering of Pichia pastoris for myo-inositol production by dynamic regulation of central metabolism. Microb Cell Fact 21:112. https://doi.org/10.1186/s12934-022-01837-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kumokita R, Bamba T, Inokuma K et al (2022) Construction of an l-tyrosine chassis in pichia pastoris enhances aromatic secondary metabolite production from glycerol. ACS Synth Biol 11:2098–2107. https://doi.org/10.1021/acssynbio.2c00047

    Article  CAS  PubMed  Google Scholar 

  79. Xi Y, Xu H, Zhan T et al (2023) Metabolic engineering of the acid-tolerant yeast Pichia kudriavzevii for efficient L-malic acid production at low pH. Metab Eng 75:170–180. https://doi.org/10.1016/j.ymben.2022.12.007

    Article  CAS  PubMed  Google Scholar 

  80. Pyne ME, Bagley JA, Narcross L, et al (2023) Screening non-conventional yeasts for organic acid tolerance and engineering Pichia occidentalis for production of cis, cis-muconic acid. bioRxiv 2023.04.23.537879. https://doi.org/10.1101/2023.04.23.537879

  81. Qian D, Zhang C, Deng C et al (2023) De novo biosynthesis of 2′-fucosyllactose in engineered Pichia pastoris. Biotechnol Lett 45:521–536. https://doi.org/10.1007/s10529-023-03357-z

    Article  CAS  PubMed  Google Scholar 

  82. Feng L, Xu J, Ye C et al (2023) Metabolic Engineering of Pichia pastoris for the Production of Triacetic Acid Lactone. J Fungi 9:494. https://doi.org/10.3390/jof9040494

    Article  CAS  Google Scholar 

  83. Miao L, Li Y, Zhu T (2021) Metabolic engineering of methylotrophic Pichia pastoris for the production of β-alanine. Bioresour Bioprocess 8:89. https://doi.org/10.1186/s40643-021-00444-9

    Article  Google Scholar 

  84. Badea S-L, Enache S, Tamaian R et al (2019) Enhanced open-circuit voltage and power for two types of microbial fuel cells in batch experiments using Saccharomyces cerevisiae as biocatalyst. J Appl Electrochem 49:17–26. https://doi.org/10.1007/s10800-018-1254-7

    Article  CAS  Google Scholar 

  85. Rozene J, Morkvenaite-Vilkonciene I, Bruzaite I et al (2021) Yeast-based microbial biofuel cell mediated by 9,10-phenantrenequinone. Electrochim Acta 373:137918. https://doi.org/10.1016/j.electacta.2021.137918

    Article  CAS  Google Scholar 

  86. Dwivedi KA, Huang S-J, Wang C-T (2022) Integration of various technology-based approaches for enhancing the performance of microbial fuel cell technology: A review. Chemosphere 287:132248. https://doi.org/10.1016/j.chemosphere.2021.132248

    Article  CAS  PubMed  Google Scholar 

  87. Rosero-Chasoy G, Rodríguez-Jasso RM, Aguilar CN et al (2021) Microbial co-culturing strategies for the production high value compounds, a reliable framework towards sustainable biorefinery implementation – an overview. Bioresour Technol 321:124458. https://doi.org/10.1016/j.biortech.2020.124458

    Article  CAS  PubMed  Google Scholar 

  88. Unrean P, Khajeeram S (2015) Model-based optimization of Scheffersomyces stipitis and Saccharomyces cerevisiae co-culture for efficient lignocellulosic ethanol production. Bioresour Bioprocess 2:41. https://doi.org/10.1186/s40643-015-0069-1

    Article  Google Scholar 

  89. Wang L, York SW, Ingram LO, Shanmugam KT (2019) Simultaneous fermentation of biomass-derived sugars to ethanol by a co-culture of an engineered Escherichia coli and Saccharomyces cerevisiae. Bioresour Technol 273:269–276. https://doi.org/10.1016/j.biortech.2018.11.016

    Article  CAS  PubMed  Google Scholar 

  90. Chen Y (2011) Development and application of co-culture for ethanol production by co-fermentation of glucose and xylose: a systematic review. J Ind Microbiol Biotechnol 38:581–597. https://doi.org/10.1007/s10295-010-0894-3

    Article  CAS  PubMed  Google Scholar 

  91. Nguyen DTT, Praveen P, Loh K-C (2019) Co-culture of Zymomonas mobilis and Scheffersomyces stipitis immobilized in polymeric membranes for fermentation of glucose and xylose to ethanol. Biochem Eng J 145:145–152. https://doi.org/10.1016/j.bej.2019.02.019

    Article  CAS  Google Scholar 

  92. Qian M, Tian S, Li X et al (2006) Ethanol production from dilute-acid softwood hydrolysate by co-culture. Appl Biochem Biotechnol 134:273–283. https://doi.org/10.1385/ABAB:134:3:273

    Article  CAS  PubMed  Google Scholar 

  93. Farias D, Maugeri Filho F (2019) Co-culture strategy for improved 2G bioethanol production using a mixture of sugarcane molasses and bagasse hydrolysate as substrate. Biochem Eng J 147:29–38. https://doi.org/10.1016/j.bej.2019.03.020

    Article  CAS  Google Scholar 

  94. Vicente J, Calderón F, Santos A et al (2021) High potential of Pichia kluyveri and other Pichia species in wine technology. Int J Mol Sci 22:1–15. https://doi.org/10.3390/ijms22031196

    Article  CAS  Google Scholar 

  95. Shrivastava A, Pal M, Sharma RK (2022) Simultaneous production of bioethanol and bioelectricity in a membrane-less single-chambered yeast fuel cell by Saccharomyces cerevisiae and Pichia fermentans. Arab J Sci Eng 47:6763–6771. https://doi.org/10.1007/s13369-021-06248-5

    Article  CAS  Google Scholar 

  96. Pal M, Shrivastava A, Sharma RK (2022) Wheat straw-based microbial electrochemical reactor for azo dye decolorization and simultaneous bioenergy generation. J Environ Manage 323:116253. https://doi.org/10.1016/j.jenvman.2022.116253

    Article  CAS  PubMed  Google Scholar 

  97. Nogueira KMV, Mendes V, Carraro CB et al (2020) Sugar transporters from industrial fungi: Key to improving second-generation ethanol production. Renew Sustain Energy Rev 131:109991. https://doi.org/10.1016/j.rser.2020.109991

    Article  CAS  Google Scholar 

  98. Doiphode N, Joshi C, Ghormade V, Deshpande MV (2009) Biotechnological applications of dimorphic yeasts. In: Satyanarayana T, Kunze G (eds) Yeast Biotechnology: Diversity and Applications. Springer, Netherlands, Dordrecht, pp 635–650

    Chapter  Google Scholar 

  99. Han T-L, Cannon RD, Villas-Bôas SG (2011) The metabolic basis of Candida albicans morphogenesis and quorum sensing. Fungal Genet Biol 48:747–763. https://doi.org/10.1016/j.fgb.2011.04.002

    Article  CAS  PubMed  Google Scholar 

  100. Choi HS, Kim DS, Thapa LP et al (2016) Production and characterization of cellobiose dehydrogenase from Phanerochaete chrysosporium KCCM 60256 and its application for an enzymatic fuel cell. Korean J Chem Eng 33:3434–3441. https://doi.org/10.1007/s11814-016-0205-4

    Article  CAS  Google Scholar 

  101. Hadiyanto H, Christwardana M, Pratiwi WZ et al (2022) Response surface optimization of microalgae microbial fuel cell (MMFC) enhanced by yeast immobilization for bioelectricity production. Chemosphere 287:132275. https://doi.org/10.1016/j.chemosphere.2021.132275

    Article  CAS  PubMed  Google Scholar 

  102. Xie R, Wang S, Wang K et al (2022) Improved energy efficiency in microbial fuel cells by bioethanol and electricity co-generation. Biotechnol Biofuels Bioprod 15:84. https://doi.org/10.1186/s13068-022-02180-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Moradian JM, Yang F-Q, Xu N et al (2022) Enhancement of bioelectricity and hydrogen production from xylose by a nanofiber polyaniline modified anode with yeast microbial fuel cell. Fuel 326:125056. https://doi.org/10.1016/j.fuel.2022.125056

    Article  CAS  Google Scholar 

  104. Abubackar HN, Biryol İ, Ayol A (2022) Yeast industry wastewater treatment with microbial fuel cells: effect of electrode materials and reactor configurations. Int J Hydrogen Energy 48:12424–12432. https://doi.org/10.1016/j.ijhydene.2022.05.277

    Article  CAS  Google Scholar 

  105. Offei F, Mensah M, Kemausuor F, Thygesen A (2019) A biorefinery approach to bioethanol and bioelectricity co-production from tropical seaweeds. J Appl Phycol 31:3899–3913. https://doi.org/10.1007/s10811-019-01887-6

    Article  CAS  Google Scholar 

  106. Moradian JM, Xu Z-A, Shi Y-T et al (2020) Efficient biohydrogen and bioelectricity production from xylose by microbial fuel cell with newly isolated yeast of Cystobasidium slooffiae. Int J Energy Res 44:325–333. https://doi.org/10.1002/er.4922

    Article  CAS  Google Scholar 

  107. Zhao N, Ma Z, Song H et al (2019) Enhancement of bioelectricity generation by synergistic modification of vertical carbon nanotubes/polypyrrole for the carbon fibers anode in microbial fuel cell. Electrochim Acta 296:69–74. https://doi.org/10.1016/j.electacta.2018.11.039

    Article  CAS  Google Scholar 

  108. Gattlen J, Zinn M, Guimond S et al (2011) Biofilm formation by the yeast Rhodotorula mucilaginosa: Process, repeatability and cell attachment in a continuous biofilm reactor. Biofouling 27:979–991. https://doi.org/10.1080/08927014.2011.619657

    Article  CAS  PubMed  Google Scholar 

  109. Speranza B, Corbo MR, Campaniello D et al (2020) Biofilm formation by potentially probiotic Saccharomyces cerevisiae strains. Food Microbiol 87:103393. https://doi.org/10.1016/j.fm.2019.103393

    Article  CAS  PubMed  Google Scholar 

  110. Avbelj M, Zupan J, Kranjc L, Raspor P (2015) Quorum-sensing kinetics in saccharomyces cerevisiae: a symphony of ARO genes and aromatic alcohols. J Agric Food Chem 63:8544–8550. https://doi.org/10.1021/acs.jafc.5b03400

    Article  CAS  PubMed  Google Scholar 

  111. Christwardana M, Frattini D, Duarte KDZ et al (2019) Carbon felt molecular modification and biofilm augmentation via quorum sensing approach in yeast-based microbial fuel cells. Appl Energy 238:239–248. https://doi.org/10.1016/j.apenergy.2019.01.078

    Article  CAS  Google Scholar 

  112. Sun D, Chen J, Huang H et al (2016) The effect of biofilm thickness on electrochemical activity of Geobacter sulfurreducens. Int J Hydrogen Energy 41:16523–16528. https://doi.org/10.1016/j.ijhydene.2016.04.163

    Article  CAS  Google Scholar 

  113. Flemming HC, Neu TR, Wozniak DJ (2007) The EPS matrix: the “house of biofilm cells.” J Bacteriol 189:7945–7947. https://doi.org/10.1128/JB.00858-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Xiao Y, Zhao F (2017) Electrochemical roles of extracellular polymeric substances in biofilms. Curr Opin Electrochem 4:206–211. https://doi.org/10.1016/j.coelec.2017.09.016

    Article  CAS  Google Scholar 

  115. Davey ME, O’toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–867. https://doi.org/10.1128/mmbr.64.4.847-867.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Li SW, Sheng GP, Cheng YY, Yu HQ (2016) Redox properties of extracellular polymeric substances (EPS) from electroactive bacteria. Sci Rep 6:1–7. https://doi.org/10.1038/srep39098

    Article  CAS  Google Scholar 

  117. Kumar P, Chandrasekhar K, Kumari A et al (2018) Electro-fermentation in aid of bioenergy and biopolymers. Energies 11:343. https://doi.org/10.3390/en11020343

    Article  CAS  Google Scholar 

  118. Yuan J, Huang H, Chatterjee SG et al (2022) Effective factors for the performance of a co-generation system for bioethanol and electricity production via microbial fuel cell technology. Biochem Eng J 178:108309. https://doi.org/10.1016/j.bej.2021.108309

    Article  CAS  Google Scholar 

  119. Weng L-C, Bell AT, Weber AZ (2019) Towards membrane-electrode assembly systems for CO2 reduction: a modeling study. Energy Environ Sci 12:1950–1968. https://doi.org/10.1039/C9EE00909D

    Article  CAS  Google Scholar 

  120. Patra P, Das M, Kundu P, Ghosh A (2021) Recent advances in systems and synthetic biology approaches for developing novel cell-factories in non-conventional yeasts. Biotechnol Adv 47:107695. https://doi.org/10.1016/j.biotechadv.2021.107695

    Article  CAS  PubMed  Google Scholar 

  121. Tullio V (2022) Yeast Genomics and its applications in biotechnological processes: what is our present and near future? J Fungi 8:752. https://doi.org/10.3390/jof8070752

    Article  CAS  Google Scholar 

  122. Yang Y, Hu M, Tang Y et al (2018) Progress and perspective on lignocellulosic hydrolysate inhibitor tolerance improvement in Zymomonas mobilis. Bioresour Bioprocess 5:6. https://doi.org/10.1186/s40643-018-0193-9

    Article  Google Scholar 

  123. Perez-Garcia O, Lear G, Singhal N (2016) Metabolic network modeling of microbial interactions in natural and engineered environmental systems. Front Microbiol 7:673. https://doi.org/10.3389/fmicb.2016.00673

    Article  PubMed  PubMed Central  Google Scholar 

  124. Yan X, Lee H-S, Li N, Wang X (2020) The micro-niche of exoelectrogens influences bioelectricity generation in bioelectrochemical systems. Renew Sustain Energy Rev 134:110184. https://doi.org/10.1016/j.rser.2020.110184

    Article  CAS  Google Scholar 

  125. Angelaalincy MJ, Navanietha Krishnaraj R, Shakambari G et al (2018) Biofilm engineering approaches for improving the performance of microbial fuel cells and bioelectrochemical systems. Front Energy Res 6:63. https://doi.org/10.3389/fenrg.2018.00063

    Article  Google Scholar 

  126. Surti P, Kailasa SK, Mungray AK (2021) Genetic engineering strategies for performance enhancement of bioelectrochemical systems: a review. Sustain Energy Technol Assessments 47:101332. https://doi.org/10.1016/j.seta.2021.101332

    Article  Google Scholar 

  127. Zou L, Qiao Y, Li CM (2018) Boosting Microbial electrocatalytic kinetics for high power density: insights into synthetic biology and advanced nanoscience. Electrochem Energy Rev 1:567–598. https://doi.org/10.1007/s41918-018-0020-1

    Article  Google Scholar 

  128. Bhagchandanii DD, Babu RP, Sonawane JM et al (2020) A Comprehensive Understanding of Electro-Fermentation. Fermentation 6:92. https://doi.org/10.3390/fermentation6030092

    Article  CAS  Google Scholar 

  129. Choi KR, Jang WD, Yang D et al (2019) Systems metabolic engineering strategies: integrating systems and synthetic biology with metabolic engineering. Trends Biotechnol 37:817–837. https://doi.org/10.1016/j.tibtech.2019.01.003

    Article  CAS  PubMed  Google Scholar 

  130. Wang K, Shi T-Q, Lin L et al (2022) Advances in synthetic biology tools paving the way for the biomanufacturing of unusual fatty acids using the Yarrowia lipolytica chassis. Biotechnol Adv 59:107984. https://doi.org/10.1016/j.biotechadv.2022.107984

    Article  CAS  PubMed  Google Scholar 

  131. Althuri A, Venkata Mohan S (2022) Emerging innovations for sustainable production of bioethanol and other mercantile products from circular economy perspective. Bioresour Technol 363:128013. https://doi.org/10.1016/j.biortech.2022.128013

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Performed literature search and writing original draft preparation: Akansha Shrivastava; writing, review and editing: Rakesh Kumar Sharma.

Corresponding author

Correspondence to Rakesh Kumar Sharma.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shrivastava, A., Sharma, R.K. Unraveling Non-conventional Yeast Pichia: An Emerging Lignocellulosic Ethanologenic and Exoelectrogenic Yeast. Bioenerg. Res. 16, 1318–1334 (2023). https://doi.org/10.1007/s12155-023-10609-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-023-10609-3

Keywords

Navigation