Skip to main content

Advertisement

Log in

Simultaneous Production of Bioethanol and Bioelectricity in a Membrane-Less Single-Chambered Yeast Fuel Cell by Saccharomyces cerevisiae and Pichia fermentans

  • Research Article-Biological Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Production of bioethanol and bioelectricity is a promising approach through microbial electrochemical technology. Sugars are metabolized by yeast to produces ethanol, CO2, and energy. Surplus electrons produced during the fermentation can be transferred through the circuit to generate electricity in a microbial fuel cell (MFC). In the present study, a membrane-less single-chambered microbial fuel cell was developed for simultaneous production of bioethanol and bioelectricity. Pichia fermentans along with well-known ethanol-producing yeast Saccharomyces cerevisiae were allowed to ferment glucose. S. cerevisiae demonstrated maximum open circuit voltage (OCV) 0.287 ± 0.009 V and power density 4.473 mW m−2 on the 15th day, with a maximum ethanol yield of 5.6% (v/v) on the 12th day. P. fermentans demonstrated a maximum OCV of 0.318 ± 0.0039 V and power density of 8.299 mW m−2 on 15th day with an ethanol yield of 4.7% (v/v) on 12th day. Coulombic efficiency (CE) increased gradually from 0.002–0.471% to 0.012–0.089% in the case of S. cerevisiae and P. fermentans, respectively, during 15 days of the experiment. The result indicated that single-chambered fuel cell can be explored for their potential applications for ethanol production along with clean energy generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Reiche, A.; Sivell, J.; Kirkwood, K.M.: Electricity generation by Propionibacterium freudenreichii in a mediatorless microbial fuel cell. Biotechnol. Lett. 38, 51–55 (2016). https://doi.org/10.1007/s10529-015-1944-8

    Article  Google Scholar 

  2. Anappara, S.; Kanirudhan, A.; Prabakar, S.; Krishnan, H.: Energy Generation in single chamber microbial fuel cell from pure and mixed culture bacteria by copper reduction. Arab. J. Sci. Eng. 45, 7719–7724 (2020). https://doi.org/10.1007/s13369-020-04832-9

    Article  Google Scholar 

  3. Agrawal, K.; Bhardwaj, N.; Kumar, B.; Chaturvedi, V.; Verma, P.: Chapter 9 - Microbial Fuel Cell: A Boon in Bioremediation of Wastes. In: Shah, M.P. and Rodriguez-Couto, S. (eds.) Microbial Wastewater Treatment. pp. 175–194. Elsevier (2019)

  4. Kumar, R.; Singh, L.; Zularisam, A.W.; Hai, F.I.: Microbial fuel cell is emerging as a versatile technology: a review on its possible applications, challenges and strategies to improve the performances. Int. J. Energy Res. 42, 369–394 (2018)

    Article  Google Scholar 

  5. Permana, D.; Rosdianti, D.; Ishmayana, S.; Rachman, S.D.; Putra, H.E.; Rahayuningwulan, D.; Hariyadi, H.R.: Preliminary investigation of electricity production using dual chamber microbial fuel cell (DCMFC) with Saccharomyces Cerevisiae as biocatalyst and methylene blue as an electron mediator. Procedia Chem. 17, 36–43 (2015). https://doi.org/10.1016/j.proche.2015.12.123

    Article  Google Scholar 

  6. Janicek, A.; Fan, Y.; Liu, H.: Design of microbial fuel cells for practical application: a review and analysis of scale-up studies. Biofuels 5, 79–92 (2014). https://doi.org/10.4155/bfs.13.69

    Article  Google Scholar 

  7. Kumar, S.S.; Kumar, V.; Malyan, S.K.; Sharma, J.; Mathimani, T.; Maskarenj, M.S.; Ghosh, P.C.; Pugazhendhi, A.: Microbial fuel cells (MFCs) for bioelectrochemical treatment of different wastewater streams. Fuel 254, 115526 (2019)

    Article  Google Scholar 

  8. Paul, D.; Noori, M.T.; Rajesh, P.P.; Ghangrekar, M.M.; Mitra, A.: Modification of carbon felt anode with graphene oxide-zeolite composite for enhancing the performance of microbial fuel cell. Sustain. Energy Technol. Assess. 26, 77–82 (2018)

    Google Scholar 

  9. Singh, H.M.; Pathak, A.K.; Chopra, K.; Tyagi, V.V.; Anand, S.; Kothari, R.: Microbial fuel cells: a sustainable solution for bioelectricity generation and wastewater treatment. Biofuels 10, 11–31 (2019). https://doi.org/10.1080/17597269.2017.1413860

    Article  Google Scholar 

  10. Geng, B.Y.; Cao, L.Y.; Li, F.; Song, H.; Liu, C.G.; Zhao, X.Q.; Bai, F.W.: Potential of Zymomonas mobilis as an electricity producer in ethanol production. Biotechnol. Biofuels. (2020). https://doi.org/10.1186/s13068-020-01672-5

    Article  Google Scholar 

  11. Walker, G.; Stewart, G.: Saccharomyces cerevisiae in the production of fermented beverages. Beverages 2, 30 (2016). https://doi.org/10.3390/beverages2040030

    Article  Google Scholar 

  12. Mohd Azhar, S.H.; Abdulla, R.; Jambo, S.A.; Marbawi, H.; Gansau, J.A.; Mohd Faik, A.A.; Rodrigues, K.F.: Yeasts in sustainable bioethanol production: a review, (2017)

  13. Prabhu, A.; Bosakornranut, E.; Amraoui, Y.; Agarwal, D.; Coulon, F.; Vivekanand, V.; Thakur, V.K.; Kumar, V.: Enhanced xylitol production using non-detoxified xylose rich pre-hydrolysate from sugarcane bagasse by newly isolated Pichia fermentans, https://doi.org/10.21203/rs.3.rs-45506/v2, (2020)

  14. Ajunwa, O.M.; Odeniyi, O.A.; Garuba, E.O.; Marsili, E.; Onilude, A.A.: Influence of enhanced electrogenicity on anodic biofilm and bioelectricity production by a novel microbial consortium. Process Biochem. 104, 27–38 (2021)

    Article  Google Scholar 

  15. Stephens, K.; Bentley, W.E.: Synthetic biology for manipulating quorum sensing in microbial consortia, (2020)

  16. Flemming, H.C.; Wuertz, S.: Bacteria and archaea on Earth and their abundance in biofilms. Nat. Rev. Microbiol. 17, 247–260 (2019). https://doi.org/10.1038/s41579-019-0158-9

    Article  Google Scholar 

  17. Speranza, B.; Corbo, M.R.; Campaniello, D.; Altieri, C.; Sinigaglia, M.; Bevilacqua, A.: Biofilm formation by potentially probiotic Saccharomyces cerevisiae strains. Food Microbiol. (2020). https://doi.org/10.1016/j.fm.2019.103393

    Article  Google Scholar 

  18. Christwardana, M.; Frattini, D.; Duarte, K.D.Z.; Accardo, G.; Kwon, Y.: Carbon felt molecular modification and biofilm augmentation via quorum sensing approach in yeast-based microbial fuel cells. Appl. Energy. 238, 239–248 (2019). https://doi.org/10.1016/j.apenergy.2019.01.078

    Article  Google Scholar 

  19. Nam, T.; Son, S.; Kim, E.; Tran, H.V.H.; Koo, B.; Chai, H.; Kim, J.; Pandit, S.; Gurung, A.; Oh, S.E.; Kim, E.J.; Choi, Y.; Jung, S.P.: Improved structures of stainless steel current collector increase power generation of microbial fuel cells by decreasing cathodic charge transfer impedance. Environ. Eng. Res. 23, 383–389 (2018). https://doi.org/10.4491/eer.2017.171

    Article  Google Scholar 

  20. Kim, J.R.; Min, B.; Logan, B.E.: Evaluation of procedures to acclimate a microbial fuel cell for electricity production. Appl. Microbiol. Biotechnol. 68, 23–30 (2005). https://doi.org/10.1007/s00253-004-1845-6

    Article  Google Scholar 

  21. Logan, B.E.; Hamelers, B.; Rozendal, R.; Schröder, U.; Keller, J.; Freguia, S.; Aelterman, P.; Verstraete, W.; Rabaey, K.: Microbial fuel cells: methodology and technology, (2006)

  22. Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. (1959). https://doi.org/10.1021/ac60147a030

    Article  Google Scholar 

  23. Pal, M.; Sharma, R.K.: Exoelectrogenic response of Pichia fermentans influenced by mediator and reactor design. J. Biosci. Bioeng. 127, 714–720 (2019). https://doi.org/10.1016/j.jbiosc.2018.11.004

    Article  Google Scholar 

  24. Nisha, M.; Shankar, M.; Krishnan, N.; Saleena, L.M.; Rajesh, M.; Vairamani, M.: Direct estimation of ethanol as a negative peak from alcoholic beverages and fermentation broths by reversed phase-HPLC. Anal. Methods. 8, 4762–4770 (2016). https://doi.org/10.1039/c6ay01075j

    Article  Google Scholar 

  25. Zhang, Z.; Cao, R.; Jin, L.; Zhu, W.; Ji, Y.; Xu, X.; Zhu, L.: The regulation of N-acyl-homoserine lactones (AHLs)-based quorum sensing on EPS secretion via ATP synthetic for the stability of aerobic granular sludge. Sci. Total Environ. 673, 83–91 (2019). https://doi.org/10.1016/j.scitotenv.2019.04.052

    Article  Google Scholar 

  26. Rossi, R.; Fedrigucci, A.; Setti, L.: Characterization of electron mediated microbial fuel cell by Saccharomyces Cerevisiae. Chem. Eng. Trans. 43, 337–342 (2015). https://doi.org/10.3303/CET1543057

    Article  Google Scholar 

  27. Yuan, J.; Liu, S.; Jia, L.; Ji, A.; Chatterjee, S.G.: Co-Generation system of bioethanol and electricity with microbial fuel cell technology. Energy Fuels 34, 6414–6422 (2020). https://doi.org/10.1021/acs.energyfuels.0c00749

    Article  Google Scholar 

  28. Nandal, P.; Sharma, S.; Arora, A.: Bioprospecting non-conventional yeasts for ethanol production from rice straw hydrolysate and their inhibitor tolerance. Renew. Energy. 147, 1694–1703 (2020). https://doi.org/10.1016/j.renene.2019.09.067

    Article  Google Scholar 

  29. Mohd Azhar, S.H.; Abdulla, R.: Bioethanol production from galactose by immobilized wild-type Saccharomyces cerevisiae. Biocatal. Agric. Biotechnol. 14, 457–465 (2018)

    Article  Google Scholar 

  30. Christwardana, M.; Frattini, D.; Accardo, G.; Yoon, S.P.; Kwon, Y.: Optimization of glucose concentration and glucose/yeast ratio in yeast microbial fuel cell using response surface methodology approach. J. Power Sources. 402, 402–412 (2018). https://doi.org/10.1016/j.jpowsour.2018.09.068

    Article  Google Scholar 

  31. Birjandi, N.; Younesi, H.; Ghoreyshi, A.A.; Rahimnejad, M.: Electricity generation, ethanol fermentation and enhanced glucose degradation in a bio-electro-Fenton system driven by a microbial fuel cell. J. Chem. Technol. Biotechnol. 91, 1868–1876 (2016). https://doi.org/10.1002/jctb.4780

    Article  Google Scholar 

  32. Flimban, S.G.A.; Ismail, I.M.I.; Kim, T.; Oh, S.E.: Overview of recent advancements in the microbial fuel cell from fundamentals to applications: design, major elements, and scalability, (2019)

  33. Zhao, Z.; Zhang, Y.: Application of ethanol-type fermentation in establishment of direct interspecies electron transfer: a practical engineering case study. Renew. Energy. 136, 846–855 (2019)

    Article  Google Scholar 

  34. dos Passos, V.F.; Marcilio, R.; Aquino-Neto, S.; Santana, F.B.; Dias, A.C.F.; Andreote, F.D.; de Andrade, A.R.; Reginatto, V.: Hydrogen and electrical energy co-generation by a cooperative fermentation system comprising Clostridium and microbial fuel cell inoculated with port drainage sediment. Bioresour. Technol. 277, 94–103 (2019)

    Article  Google Scholar 

  35. Moradian, J.M.; Fang, Z.; Yong, Y.-C.: Recent advances on biomass-fueled microbial fuel cell. Bioresour. Bioprocess. 8, 14 (2021). https://doi.org/10.1186/s40643-021-00365-7

    Article  Google Scholar 

  36. Kwak, S.; Jo, J.H.; Yun, E.J.; Jin, Y.-S.; Seo, J.-H.: Production of biofuels and chemicals from xylose using native and engineered yeast strains. Biotechnol. Adv. 37, 271–283 (2019)

    Article  Google Scholar 

  37. Chung, Y.; Ahn, Y.; Christwardana, M.; Kim, H.; Kwon, Y.: Development of a glucose oxidase-based biocatalyst adopting both physical entrapment and crosslinking, and its use in biofuel cells. Nanoscale 8, 9201–9210 (2016). https://doi.org/10.1039/c6nr00902f

    Article  Google Scholar 

  38. Flemming, H.C.; Wingender, J.; Szewzyk, U.; Steinberg, P.; Rice, S.A.; Kjelleberg, S.: Biofilms: An emergent form of bacterial life, (2016)

  39. Abid, Y.; Azabou, S.; Blecker, C.; Gharsallaoui, A.; Corsaro, M.M.; Besbes, S.; Attia, H.: Rheological and emulsifying properties of an exopolysaccharide produced by potential probiotic Leuconostoc citreum-BMS strain. Carbohydr. Polym. 256, 117523 (2021)

    Article  Google Scholar 

  40. Li, W.; Ji, J.; Chen, X.; Jiang, M.; Rui, X.; Dong, M.: Structural elucidation and antioxidant activities of exopolysaccharides from Lactobacillus helveticus MB2-1. Carbohydr. Polym. 102, 351–359 (2014). https://doi.org/10.1016/j.carbpol.2013.11.053

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Manipal University Jaipur for providing SEM and HPLC facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Kumar Sharma.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 237 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shrivastava, A., Pal, M. & Sharma, R.K. Simultaneous Production of Bioethanol and Bioelectricity in a Membrane-Less Single-Chambered Yeast Fuel Cell by Saccharomyces cerevisiae and Pichia fermentans. Arab J Sci Eng 47, 6763–6771 (2022). https://doi.org/10.1007/s13369-021-06248-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06248-5

Keywords

Navigation