Skip to main content
Log in

Enhanced open-circuit voltage and power for two types of microbial fuel cells in batch experiments using Saccharomyces cerevisiae as biocatalyst

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The combined influence of iron and calcium salts can increase the voltage and power of MFC systems using Saccharomyces cerevisiae as biocatalyst, but no systematic studies were performed. To explore these incomplete understood interactions, the production of bioelectricity has been studied in two types of dual-chambered MFC systems: in small volume batch system with frit as separator and in a medium volume batch system with nafion. In both MFC experiments, CaCO3 and FeSO4 were added as supplements in a modified medium. In the MFC experiment with frit, the highest OCV (1.143 V) was recorded at about 8 h, while in the MFC experiment with nafion, the highest OCV (1.128 V) was recorded at about 132 h, values which are attributable to the above-mentioned mineral salts and exceeding the OCV value of 0.847 V reported in the literature, thus, to our knowledge, higher than any OCV ever recorded from one single MFC operated in batch mode. The power density in the MFC experiment with frit was 1.031 W m− 2, being in concordance with the best literature values. The power densities in the MFC experiment with nafion were lower but increased over time, while the high OCV values were more stable over longer time periods. Overall, the experimental data showed the potential of Saccharomyces cerevisiae in generation of bioelectricity in different MFC configurations.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Franks AE, Nevin KP (2010) Microbial fuel cells, a current review. Energies 3(5):899–919. https://doi.org/10.3390/en3050899

    Article  CAS  Google Scholar 

  2. Santoro C, Arbizzani C, Erable B, Ieropoulos I (2017) Microbial fuel cells: from fundamentals to applications. A review. J Power Sources 356:225–244. https://doi.org/10.1016/j.jpowsour.2017.03.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Logan BE, Wallack MJ, Kim K-Y, He W, Feng Y, Saikaly PE (2015) Assessment of microbial fuel cell configurations and power densities. Environ Sci Technol Lett 2(8):206–214. https://doi.org/10.1021/acs.estlett.5b00180

    Article  CAS  Google Scholar 

  4. Lovley DR (2006) Bug juice: harvesting electricity with microorganisms. Nat Rev Microbiol 4(7):497–508. https://doi.org/10.1038/nrmicro1442

    Article  CAS  PubMed  Google Scholar 

  5. Venkata Mohan S, Velvizhi G, Annie Modestra J, Srikanth S (2014) Microbial fuel cell: critical factors regulating bio-catalyzed electrochemical process and recent advancements. Renew Sustain Energy Rev 40:779–797. https://doi.org/10.1016/j.rser.2014.07.109

    Article  CAS  Google Scholar 

  6. Logan BE, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40(17):5181–5192. https://doi.org/10.1021/es0605016

    Article  CAS  PubMed  Google Scholar 

  7. Zhang CP, Li MC, Liu GL, Luo HP, Zhang RD (2009) Pyridine degradation in the microbial fuel cells. J Hazard Mater 172(1):465–471. https://doi.org/10.1016/j.jhazmat.2009.07.027

    Article  CAS  PubMed  Google Scholar 

  8. Franks AE, Nevin KP, Jia HF, Izallalen M, Woodard TL, Lovley DR (2009) Novel strategy for three-dimensional real-time imaging of microbial fuel cell communities: monitoring the inhibitory effects of proton accumulation within the anode biofilm. Energy Environ Sci 2(1):113–119. https://doi.org/10.1039/b816445b

    Article  CAS  Google Scholar 

  9. Lu N, Zhou SG, Zhuang L, Zhang JT, Ni JR (2009) Electricity generation from starch processing wastewater using microbial fuel cell technology. Biochem Eng J 43(3):246–251. https://doi.org/10.1016/j.bej.2008.10.005

    Article  CAS  Google Scholar 

  10. Dheilly A, Linossier I, Darchen A, Hadjiev D, Corbel C, Alonso V (2008) Monitoring of microbial adhesion and biofilm growth using electrochemical impedancemetry. Appl Microbiol Biotechnol 79(1):157–164. https://doi.org/10.1007/s00253-008-1404-7

    Article  CAS  PubMed  Google Scholar 

  11. Donovan C, Dewan A, Heo D, Beyenal H (2008) Batteryless, wireless sensor powered by a sediment microbial fuel cell. Environ Sci Technol 42(22):8591–8596. https://doi.org/10.1021/es801763g

    Article  CAS  PubMed  Google Scholar 

  12. Dumas C, Mollica A, Feron D, Basseguy R, Etcheverry L, Bergel A (2008) Checking graphite and stainless anodes with an experimental model of marine microbial fuel cell. Bioresour Technol 99(18):8887–8894. https://doi.org/10.1016/j.biortech.2008.04.054

    Article  CAS  PubMed  Google Scholar 

  13. Franks AE, Nevin KP, Glaven RH, Lovley DR (2010) Microtoming coupled to microarray analysis to evaluate the spatial metabolic status of Geobacter sulfurreducens biofilms. ISME J 4(4):509–519. https://doi.org/10.1038/ismej.2009.137

    Article  PubMed  Google Scholar 

  14. Luo HP, Liu GL, Zhang RD, Jin S (2009) Phenol degradation in microbial fuel cells. Chem Eng J 147(2–3):259–264. https://doi.org/10.1016/j.cej.2008.07.011

    Article  CAS  Google Scholar 

  15. Zhu XP, Ni JR (2009) Simultaneous processes of electricity generation and p-nitrophenol degradation in a microbial fuel cell. Electrochem Commun 11(2):274–277. https://doi.org/10.1016/j.elecom.2008.11.023

    Article  CAS  Google Scholar 

  16. Liu H, Logan BE (2004) Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ Sci Technol 38(14):4040–4046. https://doi.org/10.1021/es0499344

    Article  CAS  PubMed  Google Scholar 

  17. You S-j, Zhao Q-l, Jiang J-q (2006) Biological wastewater treatment and simultaneous generating electricity from organic wastewater by microbial fuel cell. Huan Jing Ke Xue 27(9):1786–1790

    CAS  PubMed  Google Scholar 

  18. Yuan H, Hou Y, Abu-Reesh IM, Chen J, He Z (2016) Oxygen reduction reaction catalysts used in microbial fuel cells for energy-efficient wastewater treatment: a review. Mater Horiz 3(5):382–401. https://doi.org/10.1039/C6MH00093B

    Article  CAS  Google Scholar 

  19. Feng Y, Wang X, Logan BE, Lee H (2008) Brewery wastewater treatment using air-cathode microbial fuel cells. Appl Microbiol Biotechnol 78(5):873–880. https://doi.org/10.1007/s00253-008-1360-2

    Article  CAS  PubMed  Google Scholar 

  20. Galvez A, Greenman J, Ieropoulos I (2009) Landfill leachate treatment with microbial fuel cells; scale-up through plurality. Bioresour Technol 100(21):5085–5091. https://doi.org/10.1016/j.biortech.2009.05.061

    Article  CAS  PubMed  Google Scholar 

  21. Patil SA, Surakasi VP, Koul S, Ijmulwar S, Vivek A, Shouche YS, Kapadnis BP (2009) Electricity generation using chocolate industry wastewater and its treatment in activated sludge based microbial fuel cell and analysis of developed microbial community in the anode chamber. Bioresour Technol 100(21):5132–5139. https://doi.org/10.1016/j.biortech.2009.05.041

    Article  CAS  PubMed  Google Scholar 

  22. Freguia S, Teh EH, Boon N, Leung KM, Keller J, Rabaey K (2010) Microbial fuel cells operating on mixed fatty acids. Bioresour Technol 101(4):1233–1238. https://doi.org/10.1016/j.biortech.2009.09.054

    Article  CAS  PubMed  Google Scholar 

  23. Morris JM, Jin S (2008) Feasibility of using microbial fuel cell technology for bioremediation of hydrocarbons in groundwater. J Environ Sci Health A 43(1):18–23. https://doi.org/10.1080/10934520701750389

    Article  CAS  Google Scholar 

  24. Permana D, Rosdianti D, Ishmayana S, Rachman SD, Putra HE, Rahayuningwulan D, Hariyadi HR (2015) Preliminary investigation of electricity production using dual chamber microbial fuel cell (DCMFC) with Saccharomyces cerevisiae as biocatalyst and methylene blue as an electron mediator. Procedia Chem 17:36–43. https://doi.org/10.1016/j.proche.2015.12.123

    Article  CAS  Google Scholar 

  25. Rahimnejad M, Ghoreyshi AA, Najafpour GD, Younesi H, Shakeri M (2012) A novel microbial fuel cell stack for continuous production of clean energy. Int J Hydrogen Energy 37(7):5992–6000. https://doi.org/10.1016/j.ijhydene.2011.12.154

    Article  CAS  Google Scholar 

  26. An J, Kim B, Chang IS, Lee H-S (2015) Shift of voltage reversal in stacked microbial fuel cells. J Power Sources 278:534–539. https://doi.org/10.1016/j.jpowsour.2014.12.112

    Article  CAS  Google Scholar 

  27. Oh SE, Logan BE (2007) Voltage reversal during microbial fuel cell stack operation. J Power Sources 167(1):11–17. https://doi.org/10.1016/j.jpowsour.2007.02.016

    Article  CAS  Google Scholar 

  28. Lobo FL, Wang X, Ren ZJ (2017) Energy harvesting influences electrochemical performance of microbial fuel cells. J Power Sources 356:356–364. https://doi.org/10.1016/j.jpowsour.2017.03.067

    Article  CAS  Google Scholar 

  29. Yahiro AT, Lee SM, Kimble DO (1964) Bioelectrochemistry: I. enzyme utilizing bio-fuel cell studies. Biochim Biophys Acta 88(2):375–383. https://doi.org/10.1016/0926-6577(64)90192-5

    Article  CAS  PubMed  Google Scholar 

  30. Kováč L (1985) Calcium and Saccharomyces cerevisiae. Biochim Biophys Acta 840(3):317–323. https://doi.org/10.1016/0304-4165(85)90211-9

    Article  Google Scholar 

  31. Rogowska A, Pomastowski P, Złoch M, Railean-Plugaru V, Król A, Rafińska K, Szultka-Młyńska M, Buszewski B (2018) The influence of different pH on the electrophoretic behaviour of Saccharomyces cerevisiae modified by calcium ions. Sci Rep 8(1):7261. https://doi.org/10.1038/s41598-018-25024-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Park DH, Zeikus JG (2000) Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl Environ Microbiol 66(4):1292–1297. https://doi.org/10.1128/aem.66.4.1292-1297.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Holmes E, Loo RL, Stamler J, Bictash M, Yap IKS, Chan Q, Ebbels T, De Iorio M, Brown IJ, Veselkov KA, Daviglus ML, Kesteloot H, Ueshima H, Zhao LC, Nicholson JK, Elliott P (2008) Human metabolic phenotype diversity and its association with diet and blood pressure. Nature 453(7193):396. https://doi.org/10.1038/Nature06882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li-ping Fan SX (2016) Overview on electricigens for microbial fuel cell. Open Biotechnol J 10:398–406

    Article  CAS  Google Scholar 

  35. Eliato TR, Pazuki G, Majidian N (2016) Potassium permanganate as an electron receiver in a microbial fuel cell. Energy Sources A 38(5):644–651. https://doi.org/10.1080/15567036.2013.818079

    Article  CAS  Google Scholar 

  36. Logan BE (2008) Voltage generation. In: Logan BE (ed) Microbial fuel cells. Wiley, Hoboken, pp 29–43. https://doi.org/10.1002/9780470258590.ch3

    Chapter  Google Scholar 

  37. Fan YZ, Hu HQ, Liu H (2007) Enhanced Coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration. J Power Sources 171(2):348–354. https://doi.org/10.1016/j.jpowsour.2007.06.220

    Article  CAS  Google Scholar 

  38. Samsudeen N, Radhakrishnan TK, Matheswaran M (2015) Performance comparison of triple and dual chamber microbial fuel cell using distillery wastewater as a substrate. Environ Prog Sustain Energy 34(2):589–594. https://doi.org/10.1002/ep.12005

    Article  CAS  Google Scholar 

  39. Ghasemi M, Halakoo E, Sedighi M, Alam J, Sadeqzadeh M (2015) Performance comparison of three common proton exchange membranes for sustainable bioenergy production in microbial fuel cell. Procedia CIRP 26:162–166. https://doi.org/10.1016/j.procir.2014.07.169

    Article  Google Scholar 

Download references

Acknowledgements

This study was performed within the frame of ROM-EST project, Code SMIS-CSNR: 48706 and project PN 16 36 11972. We are grateful to Dr. Mihaela Ramona Buga for useful discussions and support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Silviu-Laurentiu Badea or Stanica Enache.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4353 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badea, SL., Enache, S., Tamaian, R. et al. Enhanced open-circuit voltage and power for two types of microbial fuel cells in batch experiments using Saccharomyces cerevisiae as biocatalyst. J Appl Electrochem 49, 17–26 (2019). https://doi.org/10.1007/s10800-018-1254-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-018-1254-7

Keywords

Navigation