Skip to main content
Log in

Advances in RNA Interference for Plant Functional Genomics: Unveiling Traits, Mechanisms, and Future Directions

  • Review Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

RNA interference (RNAi) is a conserved molecular mechanism that plays a critical role in post-transcriptional gene silencing across diverse organisms. This review delves into the role of RNAi in plant functional genomics and its applications in crop improvement, highlighting its mechanistic insights and practical implications. The review begins with the foundational discovery of RNAi’s mechanism, tracing its origins from petunias to its widespread presence in various organisms. Various classes of regulatory non-coding small RNAs, including siRNAs, miRNAs, and phasiRNAs, have been uncovered, expanding the scope of RNAi-mediated gene regulation beyond conventional understanding. These RNA classes participate in intricate post-transcriptional and epigenetic processes that influence gene expression. In the context of crop enhancement, RNAi has emerged as a powerful tool for understanding gene functions. It has proven effective in deciphering gene roles related to stress resistance, metabolic pathways, and more. Additionally, RNAi-based approaches hold promise for integrated pest management and sustainable agriculture, contributing to global efforts in food security. This review discusses RNAi’s diverse applications, such as modifying plant architecture, extending shelf life, and enhancing nutritional content in crops. The challenges and future prospects of RNAi technology, including delivery methods and biosafety concerns, are also explored. The global landscape of RNAi research is highlighted, with significant contributions from regions such as China, Europe, and North America. In conclusion, RNAi remains a versatile and pivotal tool in modern plant research, offering novel avenues for understanding gene functions and improving crop traits. Its integration with other biotechnological approaches such as gene editing holds the potential to shape the future of agriculture and sustainable food production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Napoli, C., Lemieux, C., & Jorgensen, R. (1990). Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. The Plant Cell, 2(4), 279–289. https://doi.org/10.1105/tpc.2.4.279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fire, A., Xu, S. Q., Montgomery, M. K., Kostas, S. A., Driver, S. E., & Mello, C. C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391, 806–811. https://doi.org/10.1038/35888

    Article  CAS  PubMed  Google Scholar 

  3. Riquelme, I., Pérez-Moreno, P., Letelier, P., Brebi, P., & Roa, J. C. (2021). The emerging role of PIWI-interacting RNAs (piRNAs) in gastrointestinal cancers: An updated perspective. Cancers (Basel), 14(1), 202. https://doi.org/10.3390/cancers14010202

    Article  CAS  PubMed  Google Scholar 

  4. Valencia-Sanchez, M. A., Liu, J., Hannon, G. J., & Parker, R. (2006). Control of translation and mRNA degradation by miRNAs and siRNAs. Genes & Development, 20, 515–524.

    Article  CAS  Google Scholar 

  5. Voinnet, O. (2009). Origin, biogenesis, and activity of plant microRNAs. Cell, 136, 669–687.

    Article  CAS  PubMed  Google Scholar 

  6. Wu, L., Zhou, H., Zhang, Q., Zhang, J., Ni, F., Liu, C., & Qi, Y. (2010). DNA methylation mediated by a microRNA pathway. Molecular Cell, 38, 465–475.

    Article  CAS  PubMed  Google Scholar 

  7. Pontes, O., Vitins, A., Ream, T. S., Hong, E., Pikaard, C. S., & Costa-Nunes, P. (2013). Intersection of small RNA pathways in Arabidopsis thaliana sub-nuclear domains. PLoS ONE, 8(6), e65652. https://doi.org/10.1371/journal.pone.0065652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ali, N., Datta, S. K., & Datta, K. (2010). RNA interference in designing transgenic crops. GM Crops, 1(4), 207–213. https://doi.org/10.4161/gmcr.1.4.13344

    Article  PubMed  Google Scholar 

  9. Wagner, N., Mroczka, A., Roberts, P. D., Schreckengost, W., & Voelker, T. (2011). RNAi trigger fragment truncation attenuates soybean FAD21 transcript suppression and yields intermediate oil phenotypes. Plant Biotechnology Journal, 9(7), 723–728. https://doi.org/10.1111/j.1467-7652.2010.00573.x

    Article  CAS  PubMed  Google Scholar 

  10. De Francesco, A., Simeone, M., Gómez, C., Costa, N., & Garcia, M. L. (2020). Transgenic Sweet Orange expressing hairpin CP-mRNA in the interstock confers tolerance to citrus psorosis virus in the non-transgenic scion. Transgenic Research, 29(2), 215–228. https://doi.org/10.1007/s11248-020-00191-1

    Article  CAS  PubMed  Google Scholar 

  11. Limera, C., Sabbadini, S., Sweet, J. B., & Mezzetti, B. (2017). New biotechnological tools for the genetic improvement of major woody fruit species. Frontiers in Plant Science, 8, 1418. https://doi.org/10.3389/fpls.2017.01418

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hsu, P. D., Lander, E. S., & Zhang, F. (2014). Development and applications of CRISPR-Cas9 for genome engineering. Cell., 157(6), 1262–1278. https://doi.org/10.1016/j.cell.2014.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li, T., Yang, Y., Qi, H., et al. (2023). CRISPR/Cas9 therapeutics: Progress and prospects. Signal Transduction and Targeted Therapy, 8, 36. https://doi.org/10.1038/s41392-023-01309-7

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gaj, T., Gersbach, C. A., & Barbas, C. F., 3rd. (2013). ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology, 31(7), 397–405. https://doi.org/10.1016/j.tibtech.2013.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhao, S., Gao, H., Jia, X., Wang, H., Ke, M., & Ma, F. (2020). The HD-Zip I transcription factor MdHB-7 regulates drought tolerance in transgenic apple (Malus domestica). Environment Experimental Botany, 180, 104246. https://doi.org/10.1016/j.envexpbot.2020.104246

    Article  CAS  Google Scholar 

  16. Mezzetti, B., Smagghe, G., Arpaia, S., Christiaens, O., Dietz-Pfeilstetter, A., Jones, H., & Taning, N. T. C. (2020). RNAi: What is its position in agriculture? Journal of Pest Science. https://doi.org/10.1042/BST20140142

    Article  Google Scholar 

  17. Song, M. S., & Rossi, J. J. (2017). Molecular mechanisms of Dicer: Endonuclease and enzymatic activity. The Biochemical Journal, 474(10), 1603–1618. https://doi.org/10.1042/BCJ20160759

    Article  CAS  PubMed  Google Scholar 

  18. Havecker, E. R., Wallbridge, L. M., Hardcastle, T. J., Bush, M. S., Kelly, K. A., Dunn, R. M., & Baulcombe, D. C. (2010). The Arabidopsis RNA-directed DNA methylation argonautes functionally diverge based on their expression and interaction with target loci. The Plant Cell, 22(2), 321–334. https://doi.org/10.1105/tpc.109.072199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu, Q., Feng, Y., & Zhu, Z. (2009). Dicer-like (DCL) proteins in plants. Functional & Integrative Genomics, 9(3), 277–286. https://doi.org/10.1007/s10142-009-0111-5

    Article  CAS  Google Scholar 

  20. Xu, M., Zhu, L., Shou, H., & Wu, P. (2005). A PIN1 family gene, OsPIN1, involved in auxin-dependent adventitious root emergence and tillering in rice. Plant and Cell Physiology, 46, 1674–1681. https://doi.org/10.1093/pcp/pci183

    Article  CAS  PubMed  Google Scholar 

  21. Zhou, H. L., He, S. J., Cao, Y. R., Chen, T., Du, B. X., Chu, C. C., & Chen, S. Y. (2006). OsGLU1, a putative membrane-bound endo-1, 4-ß-D-glucanase from rice, affects plant internode elongation. Plant Molecular Biology, 60(1), 137–151. https://doi.org/10.1007/s11103-005-2972-x

    Article  CAS  PubMed  Google Scholar 

  22. Qiao, F., Yang, Q., Wang, C. L., Fan, Y. L., Wu, X. F., & Zhao, K. J. (2007). Modification of plant height via RNAi suppression of OsGA20ox2 gene in rice. Euphytica, 158(1–2), 35–45. https://doi.org/10.1007/s10681-007-9422-6

    Article  CAS  Google Scholar 

  23. Zhao, L., Tan, L., Zhu, Z., Xiao., L, Xie, D., & Sun, C. (2015). PAY 1 improves plant architecture and enhances grain yield in rice. Plant Journal, 83(3), 528-536. https://doi.org/10.1111/tpj.12905

  24. Kohlen, W., Charnikhova, T., Lammers, M., Pollina, T., Tóth, P., Haider, I., Pozo, M. J., de Maagd, R. A., Ruyter-Spira, C., Bouwmeester, H., & López-Ráez, J. A. (2012). The tomato CAROTENOID CLEAVAGE DIOXYGENASE8 (SlCCD8) regulates rhizosphere signaling, plant architecture and affects reproductive development through strigolactone biosynthesis. New Phytologist, 196, 535–547.

    Article  CAS  PubMed  Google Scholar 

  25. Zhao, K., Zhang, F., Yang, Y., Ma, Y., Liu, Y., Li, H., & Zhang, Z. (2016). Modification of plant height via RNAi suppression of MdGA20-ox gene expression in apple. Journal of the American Society for Horticultural Science, 141(3), 242–248. https://doi.org/10.21273/JASHS.141.3.242

    Article  CAS  Google Scholar 

  26. Cheng, W., Yin, S., Tu, Y., et al. (2020). SlCAND1, encoding cullin-associated Nedd8-dissociated protein 1, regulates plant height, flowering time, seed germination, and root architecture in tomato. Plant Molecular Biology, 102, 537–551. https://doi.org/10.1007/s11103-020-00963-7

    Article  CAS  PubMed  Google Scholar 

  27. Yin, X., Liu, X., Xu, B., Lu, P., Dong, T., Yang, D., Ye, T., Feng, Y. Q., & Wu, Y. (2019). OsMADS18, a membrane-bound MADS-box transcription factor, modulates plant architecture and the abscisic acid response in rice. Journal of Experimental Botany, 70(15), 3895–3909. https://doi.org/10.1093/jxb/erz198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lu, G., Coneva, V., Casaretto, J. A., Ying, S., Mahmood, K., Liu, F., Nambara, E., Bi, Y. M., & Rothstein, S. J. (2015). OsPIN5b modulates rice (Oryza sativa) plant architecture and yield by changing auxin homeostasis, transport and distribution. Plant Journal, 83(5), 913–25. https://doi.org/10.1111/tpj.12939

    Article  CAS  Google Scholar 

  29. Klocko, A. L., Goddard, A. L., Jacobson, J. R., Magnuson, A. C., & Strauss, S. H. (2021). RNAi suppression of LEAFY gives stable floral sterility, and reduced growth rate and leaf size, in field-grown poplars. Plants, 10, 1594. https://doi.org/10.3390/plants10081594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Naeem, M., Waseem, M., Zhu, Z., et al. (2020). Downregulation of SlGRAS15 manipulates plant architecture in tomato (Solanum lycopersicum). Development Genes and Evolution, 230, 1–12. https://doi.org/10.1007/s00427-019-00643-7

    Article  PubMed  Google Scholar 

  31. Dai, Z., Wang, J., Yang, X., Lu, H., Miao, X., & Shi, Z. (2018). Modulation of plant architecture by the miR156f-OsSPL7-OsGH3.8 pathway in rice. Journal of Experimental Botany, 69(21), 5117–5130. https://doi.org/10.1093/jxb/ery273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kir, G., Ye, H., Nelissen, H., Neelakandan, A. K., Kusnandar, A. S., Luo, A., Inzé, D., Sylvester, A. W., Yin, Y., & Becraft, P. W. (2015). RNA Interference Knockdown of BRASSINOSTEROID INSENSITIVE1 in maize reveals novel functions for Brassinosteroid signaling in controlling plant architecture. Plant Physiology, 169(1), 826–39. https://doi.org/10.1104/pp.15.00367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hu, J. L., Meng, X. Y., Zhang, H. P., Zhang, Y., Li, J., Zhuang, F. Y., ... & Lin, Z. P. (2022). Recent advances in delivery strategies for plant genome editing technologies. Trends in Plant Science, 27(2), 148–163.

  34. Kurihara, Y., Takashi, Y., & Watanabe, Y. (2006). The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis. RNA, 12, 206–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kim, H. J., Kim, M. J., Pak, J. H., Im, H. H., Lee, D. H., Kim, K. H., & Chung, Y. S. (2016). RNAi-mediated soybean mosaic virus (SMV) resistance of a Korean Soybean cultivar. Plant Biotechnology Reports, 10(5), 257–267. https://doi.org/10.1007/s11816-016-0402-y

    Article  Google Scholar 

  36. Sidorova, T., Mikhailov, R., Pushin, A., Miroshnichenko, D., & Dolgov, S. (2019). Agrobacterium-mediated transformation of Russian commercial plum cv.“Startovaya”(Prunus domestica L.) with virus-derived hairpin RNA construct confers durable resistance to PPV infection in mature plants. Frontiers in Plant Science, 10, 286. https://doi.org/10.3389/fpls.2019.00286

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhang, B., Huo, Y., Zhang, J., Zhang, X., & Zhu, C. (2019). Agrobacterium rhizogenes-mediated RNAi of Tripterygium wilfordii and application for functional study of terpenoid biosynthesis pathway genes. Industrial Crops and Products, 139, 111509. https://doi.org/10.1016/j.indcrop.2019.111509

    Article  CAS  Google Scholar 

  38. Pinheiro, D. H., Taylor, C. E., Wu, K., & Siegfried, B. D. (2020). Delivery of gene-specific dsRNA by microinjection and feeding induces RNAi response in Sri Lanka weevil, Myllocerus undecimpustulatus undatus Marshall. Pest Management Science, 76(3), 936–943. https://doi.org/10.1002/ps.5601

    Article  CAS  PubMed  Google Scholar 

  39. Yao, J., Rotenberg, D., Afsharifar, A., Barandoc-Alviar, K., & Whitfield, A. E. (2013). Development of RNAi methods for Peregrinus maidis, the corn planthopper. PloS One, 8(8), e70243. https://doi.org/10.1371/journal.pone.0070243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wuriyanghan, H., & Falk, B. W. (2013). RNA interference towards the potato psyllid, Bactericera cockerelli, is induced in plants infected with recombinant tobacco mosaic virus (TMV). PLoS ONE, 8(6), e66050. https://doi.org/10.1371/journal.pone.0066050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Christiaens, O., Petek, M., Smagghe, G., Taning, C. N. T. (2020). The use of nanocarriers to improve the efficiency of RNAi-based pesticides in agriculture. In L. F. Fraceto, V. L. S. S. de Castro, R. Grillo, D. Ávila, H. Caixeta Oliveira, R. Lima (Eds.), Nanopesticides. Cham: Springer. https://doi.org/10.1007/978-3-030-44873-8_3

  42. Cooper, A. M., Silver, K., Zhang, J., Park, Y., & Zhu, K. Y. (2019). Molecular mechanisms influencing efficiency of RNA interference in insects. Pest Management Science, 75(1), 18–28. https://doi.org/10.1002/ps.5126

    Article  CAS  PubMed  Google Scholar 

  43. Zhu, K. Y., & Palli, S. R. (2020). Mechanisms, applications, and challenges of insect RNA interference. Annual Review of Entomology, 65, 293–311. https://doi.org/10.1146/annurev-ento-011019-025224

    Article  CAS  PubMed  Google Scholar 

  44. Wang, K., Peng, Y., Chen, J., Peng, Y., Wang, X., Shen, Z., & Han, Z. (2020). Comparison of efficacy of RNAi mediated by various nanoparticles in the rice striped stem borer (Chilo suppressalis). Pesticide Biochemistry and Physiology l, 165, 104467. https://doi.org/10.1016/j.pestbp.2019.10.005

    Article  CAS  Google Scholar 

  45. Elhaj Baddar, Z., Gurusamy, D., Laisney, J., Tripathi, P., Palli, S. R., & Unrine, J. M. (2020). Polymer-coated hydroxyapatite nanocarrier for double-stranded RNA delivery. Journal of Agricultural and Food Chemistry, 68(25), 6811–6818. https://doi.org/10.1021/acs.jafc.0c02182

    Article  CAS  PubMed  Google Scholar 

  46. Gurusamy, D., Laisney, J., Tripathi, P., Palli, S. R., & Unrine, J. M. (2020). A polymer-coated hydroxyapatite nanocarrier for double-stranded RNA delivery. Journal of AgriFood Chemistry. https://doi.org/10.1021/acs.jafc.0c02182

    Article  Google Scholar 

  47. Demirer, G. S., Zhang, H., Goh, N. S., Pinals, R. L., Chang, R., & Landry, M. P. (2020). Carbon nanocarriers deliver siRNA to intact plant cells for efficient gene knockdown. Science Advances, 6(26), eaaz0495. https://doi.org/10.1126/sciadv.aaz0495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mitter, N., Worrall, E. A., Robinson, K. E., Li, P., Jain, R. G., Taochy, C., & Xu, Z. P. (2017). Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nature Plants, 3(2), 1–10. https://doi.org/10.1038/nplants.2016.207

    Article  CAS  Google Scholar 

  49. Worrall, E. A., Bravo-Cazar, A., Nilon, A. T., Fletcher, S. J., Robinson, K. E., Carr, J. P., & Mitter, N. (2019). Exogenous application of RNAi-inducing double-stranded RNA inhibits aphid-mediated transmission of a plant virus. Frontiers in Plant Science, 10, 265. https://doi.org/10.3389/fpls.2019.00265

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kumar, S. (2014). RNAi (RNA Interference) Vectors for functional genomics study in plants. National Academy Science Letters, 37, 289–294. https://doi.org/10.1007/s40009-014-0234-7)

    Article  CAS  Google Scholar 

  51. Rabuma, T., Gupta, O. P., & Chhokar, V. (2022a). Recent advances and potential applications of cross-kingdom movement of miRNAs in modulating plant’s disease response. RNA Biology, 19(1), 519–532. https://doi.org/10.1080/15476286.2022.2062172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rabuma, T., Gupta, O. P., & Chhokar, V. (2022b). Genome-wide comprehensive analysis of miRNAs and their target genes expressed in resistant and susceptible Capsicum annuum genotypes during Phytophthora capsici infection. Molecular Genetics & Genomics. https://doi.org/10.1007/s00438-022-01979-y

    Article  Google Scholar 

  53. Rabuma, T., Gupta, O. P., Yadav, M., & Chhokar, V. (2022c). Integrative RNA-Seq analysis of Capsicum annuum L.-Phytophthora capsici L. pathosystem reveals molecular cross-talk and activation of host defence response. Physiology and Molecular Biology of Plants, 28, 171–188. https://doi.org/10.1007/s12298-021-01122-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gupta, O. P., Nigam, D., Dahuja, A., Kumar, S., Vinutha, T., Sachdev, A., & Praveen, S. (2017a). Regulation of isoflavone biosynthesis by miRNAs in two contrasting soybean genotypes at different seed developmental stages. Frontiers in Plant Science, 8, 567. https://doi.org/10.3389/fpls.2017.00567

    Article  PubMed  PubMed Central  Google Scholar 

  55. Gupta, O. P., Karkute, S. G., Banerjee, S., Meena, N. L., & Dahuja, A. (2017b). Contemporary understanding of miRNA-based regulation of secondary metabolites biosynthesis in plants. Frontiers in Plant Science, 8, 374. https://doi.org/10.3389/fpls.2017.00374

    Article  PubMed  PubMed Central  Google Scholar 

  56. Gupta, O. P., Dahuja, A., Sachdev, A., Kumari, S., Jain, P. K., Vinutha, T., & Praveen, S. (2019). Conserved miRNAs modulate the expression of potential transcription factors of isofavonoid biosynthetic pathway in soybean seeds. Molecular Biology Reports, 46, 3713–3730.

    Article  CAS  PubMed  Google Scholar 

  57. Banerjee, S., Banerjee, A., Gill, S. S., Gupta, O. P., Dahuja, A., Jain, P. K., & Sirohi, A. (2017). RNA Interference: A novel source of resistance to combat plant parasitic nematodes. Frontiers in Plant Science, 8, 834. https://doi.org/10.3389/fpls.2017.00834

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kaur, A., Gupta, O. P., Meena, N. L., Grewal, A., & Sharma, P. (2017). Comparative temporal expression analysis of microRNAs and their target genes in contrasting wheat genotypes during osmotic stress. Applied Biochemistry and Biotechnology, 181(2), 613–626.

    Article  CAS  PubMed  Google Scholar 

  59. Tian, S., Zhang, Z., Qin, G., & Xu, Y. (2023). Parthenocarpy in Cucurbitaceae: Advances for economic and environmental sustainability. Plants, 12(19), 3462. https://doi.org/10.3390/plants12193462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kim, J. S., Ezura, K., Lee, J., Ariizumi, T., & Ezura, H. (2019). Genetic engineering of parthenocarpic tomato plants using transient SlIAA9 knock-down by novel tissue-specific promoters. Scientific Reports, 9(1), 1–11. https://doi.org/10.1038/s41598-018-37832-9

    Article  CAS  Google Scholar 

  61. Yang, L., Huang, W., Xiong, F., Xian, Z., Su, D., Ren, M., & Li, Z. (2017). Silencing of Sl PL, which encodes a pectate lyase in tomato, confers enhanced fruit firmness, prolonged shelf-life and reduced susceptibility to grey mould. Plant Biotechnology Journal, 15(12), 1544–1555. https://doi.org/10.1111/pbi.12737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sravankumar, T., Naik, N., & Kumar, R. (2018). A ripening-induced SlGH3–2 gene regulates fruit ripening via adjusting auxin-ethylene levels in tomato (Solanum lycopersicum L.). Plant Molecular Biology, 98(4), 455–469. https://doi.org/10.1007/s11103-018-0790-1

    Article  CAS  PubMed  Google Scholar 

  63. Enrique, R., Siciliano, F., Favaro, M. A., Gerhardt, N., Roeschlin, R., Rigano, L., & Marano, M. R. (2011). Novel demonstration of RNAi in citrus reveals importance of citrus callose synthase in defence against Xanthomonas citri subsp. citri. Plant Biotechnology Journal, 9(3), 394–407. https://doi.org/10.1111/j.1467-7652.2010.00555.x

    Article  CAS  PubMed  Google Scholar 

  64. Dunoyer, P., Himber, C., & Voinnet, O. (2006). Induction, suppression and requirement of RNA silencing pathways in virulent Agrobacterium tumefaciens infections. Nature Genetics, 38(2), 258–263. https://doi.org/10.1038/ng1722

    Article  CAS  PubMed  Google Scholar 

  65. Jiang, C. J., Shimono, M., Maeda, S., Inoue, H., Mori, M., Hasegawa, M., & Takatsuji, H. (2009). Suppression of the rice fatty-acid desaturase gene OsSSI2 enhances resistance to blast and leaf blight diseases in rice. Molecular Reproduction & Development, 22(7), 820–829. https://doi.org/10.1094/MPMI-22-7-0820

    Article  CAS  Google Scholar 

  66. Yara, A., Yaeno, T., Hasegawa, M., Seto, H., Montillet, J. L., Kusumi, K., & Iba, K. (2007). Disease resistance against Magnaporthe grisea is enhanced in transgenic rice with suppression of ω-3 fatty acid desaturases. Plant and Cell Physiology, 48(9), 1263–1274. https://doi.org/10.1093/pcp/pcm107

    Article  CAS  PubMed  Google Scholar 

  67. Zhu, L., Zhu, J., Liu, Z., Wang, Z., Zhou, C., & Wang, H. (2017). Host-induced gene silencing of rice blast fungus Magnaporthe oryzae pathogenicity genes mediated by the brome mosaic virus. Genes, 8(10), 241. https://doi.org/10.3390/genes8100241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Eschen-Lippold, L., Landgraf, R., Smolka, U., Schulze, S., Heilmann, M., Heilmann, I., Hause, G., & Rosahl, S. (2012). Activation of defense against Phytophthora infestans in potato by down-regulation of syntaxin gene expression. The New Phytologist, 193(4), 985–996. https://doi.org/10.1111/j.1469-8137.2011.04024.x

    Article  CAS  PubMed  Google Scholar 

  69. Riechen, J. (2007). Establishment of broad-spectrum resistance against Blumeria graminis f. sp. tritici in Triticum aestivum by RNAi-mediated knock-down of MLO. Journal Consumer Protection Food Safety, 1(2), 120–120. https://doi.org/10.1007/s00003-007-282-8

    Article  Google Scholar 

  70. Wang, K., Peng, Y., Pu, J., Fu, W., Wang, J., & Han, Z. (2016). Variation in RNAi efficacy among insect species is attributable to dsRNA degradation in vivo. Insect Biochemistry and Molecular Biology, 77, 1–9. https://doi.org/10.1016/j.ibmb.2016.07.007

    Article  CAS  PubMed  Google Scholar 

  71. Koch, A., Biedenkopf, D., Furch, A., Weber, L., Rossbach, O., Abdellatef, E., & Cardoza, V. (2016). An RNAi-based control of Fusarium graminearum infections through spraying of long dsRNAs involves a plant passage and is controlled by the fungal silencing machinery. PLoS Pathogens, 12(10), e1005901. https://doi.org/10.1371/journal.ppat.1005901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. McLoughlin, A. G., Wytinck, N., Walker, P. L., Girard, I. J., Rashid, K. Y., de Kievit, T., & Belmonte, M. F. (2018). Identification and application of exogenous dsRNA confers plant protection against Sclerotinia sclerotiorum and Botrytis cinerea. Science and Reports, 8(1), 1–14. https://doi.org/10.1038/s41598-018-25434-4

    Article  CAS  Google Scholar 

  73. Song, X. S., Gu, K. X., Duan, X. X., Xiao, X. M., Hou, Y. P., Duan, Y. B., & Zhou, M. G. (2018). A myosin5 dsRNA that reduces the fungicide resistance and pathogenicity of Fusarium asiaticum. Pesticide Biochemistry and Physiology, 150, 1–9. https://doi.org/10.1016/j.pestbp.2018.07.004

    Article  CAS  PubMed  Google Scholar 

  74. Gu, K. X., Song, X. S., Xiao, X. M., Duan, X. X., Wang, J. X., Duan, Y. B., & Zhou, M. G. (2019). A β2-tubulin dsRNA derived from Fusarium asiaticum confers plant resistance to multiple phytopathogens and reduces fungicide resistance. Pesticide Biochemistry and Physiology, 153, 36–46. https://doi.org/10.1016/j.pestbp.2018.10.005

    Article  CAS  PubMed  Google Scholar 

  75. Bai, X., Huang, X., Tian, S., Peng, H., Zhan, G., Goher, F., & Guo, J. (2021). RNAi-mediated stable silencing of TaCSN5 confers broad-spectrum resistance to Puccinia striiformis f. sp. tritici. Molecular Plant Pathology, 22(4), 410–421. https://doi.org/10.1111/mpp.13034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhang, C., & Ghabrial, S. A. (2006). Development of Bean pod mottle virus-based vectors for stable protein expression and sequence-specific virus-induced gene silencing in soybean. Virology, 344(2), 401–411. https://doi.org/10.1016/j.virol.2005.08.046

    Article  CAS  PubMed  Google Scholar 

  77. Fofana, I. B. F., Sangaré, A., Collier, R., et al. (2004). A geminivirus-induced gene silencing system for gene function validation in cassava. Plant Molecular Biology, 56, 613–624. https://doi.org/10.1007/s11103-004-0161-y

    Article  CAS  PubMed  Google Scholar 

  78. Bonfim, K., Faria, J. C., Nogueira, E. O., Mendes, E. A., & Aragão, F. J. (2007). RNAi-mediated resistance to Bean golden mosaic virus in genetically engineered common bean (Phaseolus vulgaris). Molecular Plant-Microbe Interactions, 20(6), 717–26. https://doi.org/10.1094/MPMI-20-6-0717

    Article  CAS  PubMed  Google Scholar 

  79. Shimizu, T., Yoshii, M., Wei, T., Hirochika, H., & Omura, T. (2008). Silencing by RNAi of the gene for Pns12, a viroplasm matrix protein of rice dwarf virus, results in strong resistance of transgenic rice plants to the virus. Plant Biotechnology Journal. https://doi.org/10.1111/j.1467-7652.2008.00366.x

    Article  Google Scholar 

  80. Niu, Q. W., Lin, S. S., Reyes, J. L., Chen, K. C., Wu, H. W., Yeh, S. D., & Chua, N. H. (2006). Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nature Biotechnology, 24(11), 1420–1428. https://doi.org/10.1038/nbt1255

    Article  CAS  PubMed  Google Scholar 

  81. Gan, D., Zhang, J., Jiang, H., Jiang, T., Zhu, S., & Cheng, B. (2010). Bacterially expressed dsRNA protects maize against SCMV infection. Plant Cell Reports, 29(11), 1261–1268. https://doi.org/10.1007/s00299-010-0911-z

    Article  CAS  PubMed  Google Scholar 

  82. Beyene, G., Chauhan, R. D., Ilyas, M., Wagaba, H., Fauquet, C. M., Miano, D., & Taylor, N. J. (2017). A virus-derived stacked RNAi construct confers robust resistance to cassava brown streak disease. Frontiers in Plant Science, 7, 2052. https://doi.org/10.3389/fpls.2016.02052

    Article  PubMed  PubMed Central  Google Scholar 

  83. Kumar, A., Kakrana, A., Sirohi, A., Subramaniam, K., Srinivasan, R., Abdin, M. Z., & Jain, P. K. (2017). Host-delivered RNAi-mediated root-knot nematode resistance in Arabidopsis by targeting splicing factor and integrase genes. Journal of General Plant Pathology, 83(2), 91–97. https://doi.org/10.1007/s10327-017-0701-3

    Article  CAS  Google Scholar 

  84. Leibman, D., Ortega-Parra, N., Wolf, D., Shterkman, M., Hanssen, I., & Gal-On, A. (2021). A transgenic RNAi approach for developing tomato plants immune to Pepino mosaic virus. Plant Pathology, 70(4), 1003–1012. https://doi.org/10.1111/ppa.13346

    Article  CAS  Google Scholar 

  85. Mao, Y. B., Cai, W. J., Wang, J. W., Hong, G. J., Tao, X. Y., Wang, L. J., & Chen, X. Y. (2007). Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nature Biotechnology, 25(11), 1307–1313. https://doi.org/10.1038/nbt1352

    Article  CAS  PubMed  Google Scholar 

  86. Baum, J. A., Bogaert, T., Clinton, W., Heck, G. R., Feldmann, P., Ilagan, O., & Vaughn, T. (2007). Control of coleopteran insect pests through RNA interference. Nature Biotechnology, 25(11), 1322–1326. https://doi.org/10.1038/nbt1359

    Article  CAS  PubMed  Google Scholar 

  87. Mao, Y. B., Tao, X. Y., Xue, X. Y., Wang, L. J., & Chen, X. Y. (2011). Cotton plants expressing CYP6AE14 double-stranded RNA show enhanced resistance to bollworms. Transgenic Research, 20(3), 665–673. https://doi.org/10.1007/s11248-010-9450-1

    Article  CAS  PubMed  Google Scholar 

  88. Jin, S., Singh, N. D., Li, L., Zhang, X., & Daniell, H. (2015). Engineered chloroplast dsRNA silences cytochrome p450 monooxygenase, V-ATPase and chitin synthase genes in the insect gut and disrupts Helicoverpa armigera larval development and pupation. Plant Biotechnology Journal, 13(3), 435–446. https://doi.org/10.1111/pbi.12355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zha, W., Peng, X., Chen, R., Du, B., Zhu, L., & He, G. (2011). Knock-down of midgut genes by dsRNA-transgenic plant-mediated RNA interference in the hemipteran insect Nilaparvata lugens. PloS One, 6(5), e20504. https://doi.org/10.1371/journal.pone.0020504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yu, R., Xu, X., Liang, Y., Tian, H., Pan, Z., Jin, S., & Zhang, W. (2014). The insect ecdysone receptor is a good potential target for RNAi-based pest control. International Journal of Biological Sciences, 10(10), 1171. https://doi.org/10.7150/ijbs.9598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sun, Z., Shi, Q., Li, Q., Wang, R., Xu, C., Wang, H., & Zeng, R. (2019). Identification of a cytochrome P450 CYP6AB60 gene associated with tolerance to multi-plant allelochemicals from a polyphagous caterpillar tobacco cutworm (Spodoptera litura). Pesticide Biochemistry and Physiology, 154, 60–66. https://doi.org/10.1016/j.pestbp.2018.12.006

    Article  CAS  PubMed  Google Scholar 

  92. Dutta, T. K., Papolu, P. K., Banakar, P., Choudhary, D., Sirohi, A., & Rao, U. (2015). Tomato transgenic plants expressing hairpin construct of a nematode protease gene conferred enhanced resistance to root-knot nematodes. Frontiers Microbiology, 6, 260. https://doi.org/10.3389/fmicb.2015.00260

    Article  Google Scholar 

  93. Guo, X., Chronis, D., De La Torre, C. M., Smeda, J., Wang, X., & Mitchum, M. G. (2015). Enhanced resistance to soybean cyst nematode Heterodera glycines in transgenic soybean by silencing putative CLE receptors. Plant Biotechnology Journal, 13(6), 801–810. https://doi.org/10.1111/pbi.12313

    Article  CAS  PubMed  Google Scholar 

  94. Tian, B., Li, J., Oakley, T. R., Todd, T. C., & Trick, H. N. (2016). Host-derived artificial microRNA as an alternative method to improve soybean resistance to soybean cyst nematode. Genes, 7(12), 122. https://doi.org/10.3390/genes7120122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kakrana, A., Kumar, A., Satheesh, V., Abdin, M. Z., Subramaniam, K., Bhattacharya, R. C., & Jain, P. K. (2017). Identification, validation and utilisation of novel nematode-responsive root-specific promoters in Arabidopsis for inducing host-delivered RNAi mediated root-knot nematode resistance. Frontiers in Plant Science, 8, 2049. https://doi.org/10.3389/fpls.2017.02049

    Article  PubMed  PubMed Central  Google Scholar 

  96. Joshi, I., Kumar, A., Singh, A. K., Kohli, D., Raman, K. V., Sirohi, A., & Jain, P. K. (2019). Development of nematode resistance in Arabidopsis by HD-RNAi-mediated silencing of the effector gene Mi-msp2. Scientific Reports, 9(1), 1–11. https://doi.org/10.1038/s41598-019-53485-8

    Article  CAS  Google Scholar 

  97. Chaudhary, S., Dutta, T. K., Shivakumara, T. N., & Rao, U. (2019). RNAi of esophageal gland-specific gene Mi-msp-1 alters early stage infection behaviour of root-knot nematode, Meloidogyne incognita. Journal Plant Patho, 85(3), 232–242. https://doi.org/10.1007/s10327-019-00837-x

    Article  CAS  Google Scholar 

  98. Joshi, I., Kumar, A., Kohli, D., Singh, A. K., Sirohi, A., Subramaniam, K., & Jain, P. K. (2020). Conferring root-knot nematode resistance via host-delivered RNAi-mediated silencing of four Mi-msp genes in Arabidopsis. Plant Science, 298, 110592. https://doi.org/10.1016/j.plantsci.2020.110592

    Article  CAS  PubMed  Google Scholar 

  99. Dutta, T. K., Papolu, P. K., Singh, D., Sreevathsa, R., & Rao, U. (2020). Expression interference of a number of Heterodera avenae conserved genes perturbs nematode parasitic success in Triticum aestivum. Plant Science, 301, 110670. https://doi.org/10.1016/j.plantsci.2020.110670

    Article  CAS  PubMed  Google Scholar 

  100. Banakar, P., Hada, A., Papolu, P. K., & Rao, U. (2020). Simultaneous RNAi Knock-down of Three FMRFamide-like peptide genes, Mi-flp1, Mi-flp12, and Mi-flp18 provides resistance to root-knot nematode, Meloidogyne incognita. Frontiers Microbiology, 11, 2690. https://doi.org/10.3389/fmicb.2020.573916

    Article  Google Scholar 

  101. Wang, Y., Juranek, S., Li, H., Sheng, G., Wardle, G. S., Tuschl, T., & Patel, D. J. (2009). Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes. Nature, 461(7265), 754–761. https://doi.org/10.1038/nature08434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Li, D. H., Hui, L. I. U., Yang, Y. L., Zhen, P. P., & Liang, J. S. (2009). Down-regulated expression of RACK1 gene by RNA interference enhances drought tolerance in rice. Rice Science, 16(1), 14–20. https://doi.org/10.1016/S1672-6308(08)60051-7

    Article  Google Scholar 

  103. Park, G. G., Park, J. J., Yoon, J., Yu, S. N., & An, G. (2010). A RING finger E3 ligase gene, Oryza sativa Delayed Seed Germination 1 (OsDSG1), controls seed germination and stress responses in rice Plant. Mole Biology, 74(4–5), 467–478. https://doi.org/10.1007/s11103-010-9687-3

    Article  CAS  Google Scholar 

  104. Wang, T., Chen, L., Zhao, M., Tian, Q., & Zhang, W. H. (2011). Identification of drought-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing. BMC Genomics, 12(1), 367. https://doi.org/10.1186/1471-2164-12-367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Manavalan, L. P., Chen, X., Clarke, J., Salmeron, J., & Nguyen, H. T. (2012). RNAi-mediated disruption of squalene synthase improves drought tolerance and yield in rice. Journal of Experimental Botany, 63(1), 163–175. https://doi.org/10.1093/jxb/err258

    Article  CAS  PubMed  Google Scholar 

  106. Arshad, M., Feyissa, B. A., Amyot, L., Aung, B., & Hannoufa, A. (2017). MicroRNA156 improves drought stress tolerance in alfalfa (Medicago sativa) by silencing SPL13. Plant Science, 258, 122–136. https://doi.org/10.1016/j.plantsci.2017.01.018

    Article  CAS  PubMed  Google Scholar 

  107. Ma, X. J., Yu, T. F., Li, X. H., Cao, X. Y., Ma, J., Chen, J., & Xu, Z. S. (2020). Overexpression of GmNFYA5 confers drought tolerance to transgenic Arabidopsis and soybean plants. BMC Plant Biology, 20(1), 1–18. https://doi.org/10.1186/s12870-020-02337-z

    Article  CAS  Google Scholar 

  108. Xiong, H., Yu, J., Miao, J., Li, J., Zhang, H., Wang, X., & Li, Z. (2018). Natural variation in OsLG3 increases drought tolerance in rice by inducing ROS scavenging. Plant Physiology, 178(1), 451–467. https://doi.org/10.1104/pp.17.01492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wang, J., Zhang, L., Cao, Y., Qi, C., Li, S., Liu, L., & Guo, Y. D. (2018). CsATAF1 positively regulates drought stress tolerance by an ABA-dependent pathway and by promoting ROS scavenging in cucumber. Plant and Cell Physiology, 59(5), 930–945. https://doi.org/10.1093/pcp/pcy030

    Article  CAS  PubMed  Google Scholar 

  110. Chen, S., Wu, F., Li, Y., Qian, Y., Pan, X., Li, F., & Yang, A. (2019). NtMYB4 and NtCHS1 are critical factors in the regulation of flavonoid biosynthesis and are involved in salinity responsiveness. Frontiers in Plant Science, 10, 178. https://doi.org/10.3389/fpls.2019.00178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Yang, J., Zhang, G., An, J., Li, Q., Chen, Y., Zhao, X., & Wang, W. (2020). Expansin gene TaEXPA2 positively regulates drought tolerance in transgenic wheat (Triticum aestivum L). Plant Science, 298, 110596. https://doi.org/10.1016/j.plantsci.2020.110596

    Article  CAS  PubMed  Google Scholar 

  112. Hanly, A., Karagiannis, J., Lu, Q. S. M., Tian, L., & Hannoufa, A. (2020). Characterisation of the role of SPL9 in drought stress tolerance in Medicago sativa. International Journal of Molecular Sciences, 21(17), 6003. https://doi.org/10.3390/ijms21176003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Huang, L., Wang, Y., Wang, W., Zhao, X., Qin, Q., Sun, F., & Li, Z. (2018). Characterisation of transcription factor gene OsDRAP1 conferring drought tolerance in rice. Frontiers in Plant Science, 9, 94. https://doi.org/10.3389/fpls.2018.00094

    Article  PubMed  PubMed Central  Google Scholar 

  114. Zhang, L., Guo, X., Zhang, Z., Wang, A., & Zhu, J. (2021). Cold-regulated gene LeCOR413PM2 confers cold stress tolerance in tomato plants. Gene, 764, 145097. https://doi.org/10.1016/j.gene.2020.145097

    Article  CAS  PubMed  Google Scholar 

  115. Yang, C., Li, D., Mao, D., Liu, X. U. E., Ji, C., Li, X., & Zhu, L. (2013). Overexpression of micro RNA 319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice (O ryza sativa L.). Plant, Cell & Environment, 36(12), 2207–2218. https://doi.org/10.1111/pce.12130

    Article  CAS  Google Scholar 

  116. Jeknić, Z., Pillman, K. A., Dhillon, T., Skinner, J. S., Veisz, O., Cuesta-Marcos, A., & Stockinger, E. J. (2014). Hv-CBF2A overexpression in barley accelerates COR gene transcript accumulation and acquisition of freezing tolerance during cold acclimation. Plant Molecular Biology, 84(1–2), 67–82. https://doi.org/10.1007/s11103-013-0119-z

    Article  CAS  PubMed  Google Scholar 

  117. Kidokoro, S., Watanabe, K., Ohori, T., Moriwaki, T., Maruyama, K., Mizoi, J., & Yamaguchi-Shinozaki, K. (2015). Soybean DREB 1/CBF-type transcription factors function in heat and drought as well as cold stress-responsive gene expression. The Plant Journal, 81(3), 505–518. https://doi.org/10.1111/tpj.12746

    Article  CAS  PubMed  Google Scholar 

  118. Liu, C., Schläppi, M. R., Mao, B., Wang, W., Wang, A., & Chu, C. (2019). The bZIP 73 transcription factor controls rice cold tolerance at the reproductive stage. Plant Biotechnology Journal, 17(9), 1834–1849. https://doi.org/10.1111/pbi.13104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Guan, Q., Lu, X., Zeng, H., Zhang, Y., & Zhu, J. (2013). Heat stress induction of mi R 398 triggers a regulatory loop that is critical for thermotolerance in A rabidopsis. The Plant Journal, 74(5), 840–851. https://doi.org/10.1111/tpj.12169

    Article  CAS  PubMed  Google Scholar 

  120. Lin, Y. H., Huang, L. F., Hase, T., Huang, H. E., & Feng, T. Y. (2015). Expression of plant ferredoxin-like protein (PFLP) enhances tolerance to heat stress in Arabidopsis thaliana. New Biotechnology, 32(2), 235–242. https://doi.org/10.1016/j.nbt.2014.12.001

    Article  CAS  PubMed  Google Scholar 

  121. Liu, J., Zhang, C., Wei, C., Liu, X., Wang, M., Yu, F., & Tu, J. (2016). The RING finger ubiquitin E3 ligase OsHTAS enhances heat tolerance by promoting H2O2-induced stomatal closure in rice. Plant Physiology, 170(1), 429–443. https://doi.org/10.1104/pp.15.00879

    Article  CAS  PubMed  Google Scholar 

  122. Zhang, S., Wang, S., Lv, J., Liu, Z., Wang, Y., Ma, N., & Meng, Q. (2018). SUMO E3 ligase SlSIZ1 facilitates heat tolerance in tomato. Plant and Cell Physiology, 59(1), 58–71. https://doi.org/10.1093/pcp/pcx160

    Article  CAS  PubMed  Google Scholar 

  123. Zhuang, K., Gao, Y., Liu, Z., Diao, P., Sui, N., Meng, Q., & Kong, F. (2020). WHIRLY1 regulates HSP21. 5A expression to promote thermotolerance in tomato. Plant and Cell Physiology, 61(1), 169–177. https://doi.org/10.1093/pcp/pcz189

    Article  CAS  PubMed  Google Scholar 

  124. Guo, C., Luo, C., Guo, L., Li, M., Guo, X., Zhang, Y., & Chen, L. (2016). OsSIDP366, a DUF1644 gene, positively regulates responses to drought and salt stresses in rice. Journal of Integrative Plant Biology, 58(5), 492–502. https://doi.org/10.1111/jipb.12376

    Article  CAS  PubMed  Google Scholar 

  125. Cai, X., Zhang, C., Shu, W., Ye, Z., Li, H., & Zhang, Y. (2016). The transcription factor SlDof22 involved in ascorbate accumulation and salinity stress in tomato. Biochemical and Biophysical Research Communications, 474(4), 736–741. https://doi.org/10.1016/j.bbrc.2016.04.148

    Article  CAS  PubMed  Google Scholar 

  126. Joshi, R., Sahoo, K. K., Tripathi, A. K., Kumar, R., Gupta, B. K., Pareek, A., & Singla-Pareek, S. L. (2018). Knockdown of an inflorescence meristem-specific cytokinin oxidase–OsCKX2 in rice reduces yield penalty under salinity stress condition. Plant, Cell and Environment, 41(5), 936–946. https://doi.org/10.1111/pce.12947

    Article  CAS  PubMed  Google Scholar 

  127. Wu, J., Yu, C., Huang, L., & Gan, Y. (2021). A rice transcription factor, OsMADS57, positively regulates high salinity tolerance in transgenic Arabidopsis thaliana and Oryza sativa plants. Physiologia Plantarum, 173(3), 1120–1125. https://doi.org/10.1111/ppl.13508

    Article  CAS  PubMed  Google Scholar 

  128. Sun, L., Yuan, B., Zhang, M., Wang, L., Cui, M., Wang, Q., & Leng, P. (2012). Fruit-specific RNAi-mediated suppression of SlNCED1 increases both lycopene and β-carotene contents in tomato fruit. Journal of Experimental Botany, 63(8), 3097–3108. https://doi.org/10.1093/jxb/ers026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Yu, B., Lydiate, D. J., Young, L. W., Schäfer, U. A., & Hannoufa, A. (2008). Enhancing the carotenoid content of Brassica napus seeds by downregulating lycopene epsilon cyclase. Transgenic Research, 17(4), 573–585. https://doi.org/10.1007/s11248-007-9131-x

    Article  CAS  PubMed  Google Scholar 

  130. Davuluri, G. R., Van Tuinen., A., Fraser, P. D., Manfredonia, A., Newman, R., Burgess, D., & Bramley, P. M. (2005). Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes. Nature Biotechnology, 23(7), 890-895. https://doi.org/10.1038/nbt1108

  131. Wei, S. H. U., Li, X., Gruber, M. Y., Li, R., Zhou, R., Zebarjadi, A., & Hannoufa, A. (2009). RNAi-mediated suppression of DET1 alters the levels of carotenoids and sinapate esters in seeds of Brassica napus. Journal of Agricultural and Food Chemistry, 57(12), 5326–5333. https://doi.org/10.1021/jf803983w

    Article  CAS  PubMed  Google Scholar 

  132. Van Eck, J., Conlin, B., Garvin, D. F., et al. (2007). Enhancing beta-carotene content in potato by rnai-mediated silencing of the beta-carotene hydroxylase gene. American Journal of Potato Research, 84, 331–342. https://doi.org/10.1007/BF02986245

    Article  CAS  Google Scholar 

  133. Weise, S. E., Aung, K., Jarou, Z. J., Mehrshahi, P., Li, Z., Hardy, A. C., & Sharkey, T. D. (2012). Engineering starch accumulation by manipulation of phosphate metabolism of starch. Plant Biotechnology Journal, 10(5), 545–554. https://doi.org/10.1111/j.1467-7652.2012.00684.x

    Article  CAS  PubMed  Google Scholar 

  134. Houmard, N. M., Mainville, J. L., Bonin, C. P., Huang, S., Luethy, M. H., & Malvar, T. M. (2007). High‐lysine corn generated by endosperm‐specific suppression of lysine catabolism using RNAi. Plant Biotech Journal, 5(5): 605–614. https://doi.org/10.1111/j.1467-7652.2007.00265.x. https://doi.org/10.1016/j.scienta.2011.03.025

  135. Regina, A., Kosar-Hashemi, B., Ling, S., Li, Z., Rahman, S., & Morell, M. (2010). Control of starch branching in barley defined through differential RNAi suppression of starch branching enzyme IIa and IIb. Journal of Experimental Botany, 61(5), 1469–1482. https://doi.org/10.1093/jxb/erq011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Liu, Q., Singh, S. P., & Green, A. G. (2002). High-stearic and high-oleic cottonseed oils produced by hairpin RNA-mediated post-transcriptional gene silencing. Plant Physiology, 129(4), 1732–1743. https://doi.org/10.1104/pp.001933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Ali, N., Paul, S., Gayen, D., Sarkar, S. N., Datta, K., & Datta, S. K. (2013). Development of low phytate rice by RNAi mediated seed-specific silencing of inositol 1, 3, 4, 5, 6-pentakisphosphate 2-kinase gene (IPK1). PLoS ONE, 8(7), e68161. https://doi.org/10.1371/journal.pone.0068161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Aggarwal, S., Kumar, A., Bhati, K. K., Kaur, G., Shukla, V., Tiwari, S., & Pandey, A. K. (2018). RNAi-mediated downregulation of inositol pentakisphosphate kinase (IPK1) in wheat grains decreases phytic acid levels and increases Fe and Zn accumulation. Frontiers in Plant Science, 9, 259. https://doi.org/10.3389/fpls.2018.00259

    Article  PubMed  PubMed Central  Google Scholar 

  139. Ko, M. R., Song, M. H., Kim, J. K., Baek, S. A., You, M. K., Lim, S. H., & Ha, S. H. (2018). RNAi-mediated suppression of three carotenoid-cleavage dioxygenase genes, OsCCD1, 4a, and 4b, increases carotenoid content in rice. Journal of Experimental Botany, 69(21), 5105–5116. https://doi.org/10.1093/jxb/ery300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Kumar, A., Kumar, V., Krishnan, V., Hada, A., Marathe, A., Parameswaran, C., & Sachdev, A. (2019). Seed targeted RNAi-mediated silencing of GmMIPS1 limits phytate accumulation and improves mineral bioavailability in soybean. Scientific Reports, 9(1), 1–13. https://doi.org/10.1038/s41598-019-44255-7

    Article  CAS  Google Scholar 

  141. Yang, Q. Q., Yu, W. H., Wu, H. Y., Zhang, C. Q., Sun, S. S. M., & Liu, Q. Q. (2021). Lysine biofortification in rice by modulating feedback inhibition of aspartate kinase and dihydrodipicolinate synthase. Plant Biotechnology Journal, 19(3), 490–501. https://doi.org/10.1111/pbi.13478

    Article  CAS  PubMed  Google Scholar 

  142. Narayanan, N., Beyene, G., Chauhan, R. D., Grusak, M. A., & Taylor, N. J. (2021). Stacking disease resistance and mineral biofortification in cassava varieties to enhance yields and consumer health. Plant Biotechnology Journal, 19(4), 844–854. https://doi.org/10.1111/pbi.13511

    Article  CAS  PubMed  Google Scholar 

  143. Zhang, X., Zhao, H., Gao, S., Wang, W. C., Katiyar-Agarwal, S., Huang, H. D., & Jin, H. (2011). Arabidopsis Argonaute 2 regulates innate immunity via miRNA393∗-mediated silencing of a Golgi-localized SNARE gene, MEMB12. Molecular Cell, 42(3), 356–366. https://doi.org/10.1016/j.molcel.2011.04.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Ogita, S., Uefuji, H., Yamaguchi, Y., Koizumi, N., & Sano, H. (2003). Producing decaffeinated coffee plants. Nature, 423(6942), 823–823. https://doi.org/10.1038/423823a

    Article  CAS  PubMed  Google Scholar 

  145. Li, J. C., Guo, J. B., Xu, W. Z., & Ma, M. (2007). RNA interference-mediated silencing of phytochelatin synthase gene reduce cadmium accumulation in rice seeds. Journal of Integrative Plant Biology, 49(7), 1032–1037. https://doi.org/10.1111/j.1672-9072.2007.00473.x

    Article  CAS  Google Scholar 

  146. Allen, R. S., Millgate, A. G., Chitty, J. A., Thisleton, J., Miller, J. A., Fist, A. J., & Larkin, P. J. (2004). RNAi-mediated replacement of morphine with the nonnarcotic alkaloid reticuline in opium poppy. Nature Biotechnology, 22(12), 1559–1566. https://doi.org/10.1038/nbt1033

    Article  CAS  PubMed  Google Scholar 

  147. Das, N., Bhattacharya, S., Bhattacharyya, S., & Maiti, M. K. (2017). Identification of alternatively spliced transcripts of rice phytochelatin synthase 2 gene OsPCS2 involved in mitigation of cadmium and arsenic stresses. Plant Molecular Biology, 94(1), 167–183. https://doi.org/10.1007/s11103-017-0600-1

    Article  CAS  PubMed  Google Scholar 

  148. Zhang, B. Q., Liu, X. S., Feng, S. J., Zhao, Y. N., Wang, L. L., Rono, J. K., & Yang, Z. M. (2020). Developing a cadmium resistant rice genotype with OsHIPP29 locus for limiting cadmium accumulation in the paddy crop. Chemosphere, 247, 125958. https://doi.org/10.1016/j.chemosphere.2020.125958

    Article  CAS  PubMed  Google Scholar 

  149. Gupta, O. P., Sharma, P., Gupta, R. K., & Sharma, I. (2014). MicroRNA mediated regulation of metal toxicity in plants: Present status and future perspectives. Plant Molecular Biology, 84(1–2), 1–18. https://doi.org/10.1007/s11103-013-0120-6

    Article  CAS  PubMed  Google Scholar 

  150. Weise, S. E., van, Wijk, K. J., & Sharkey, T. D. (2011). The role of transitory starch in C3, CAM, and C4 metabolism and opportunities for engineering leaf starch accumulation. Journal of Experimental Botany, 62(9), 3109-3118. https://doi.org/10.1093/jxb/err035

  151. Gil-Humanes, J., Pistón, F., Rosell, C. M., & Barro, F. (2012). Significant down-regulation of γ-gliadins has minor effect on gluten and starch properties of bread wheat. Journal of Cereal Science, 56(2), 161–170. https://doi.org/10.1016/j.jcs.2012.02.009

    Article  CAS  Google Scholar 

  152. Chen, B., Gilbert, L. A., Cimini, B. A., Schnitzbauer, J., Zhang, W., Li, G. W., ... & Huang, B. (2021). Practical considerations for CRISPR-Cas genome editing. Nature Communications, 12(1), 1–10.

  153. Karkute, S. G., Singh, A. K., Gupta, O. P., Singh, P. M., & Singh, B. (2017). CRISPR/Cas9 mediated genome engineering for improvement of horticultural crops. Frontiers in Plant Science, 8, 1635. https://doi.org/10.3389/fpls.2017.01635

    Article  PubMed  PubMed Central  Google Scholar 

  154. Sharma, S. K., Gupta, O. P., Pathaw, N., Sharma, D., Maibam, A., Sharma, P., Sanasam, J., Karkute, S. G., Kumar, S., & Bhattacharjee, B. (2021). CRISPR-Cas-Led revolution in diagnosis and management of emerging plant viruses: New avenues toward food and nutritional security. Frontiers in Nutrition, 8, 751512. https://doi.org/10.3389/fnut.2021.751512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Doudna, J. A., & Charpentier, E. (2014). The new frontier of genome engineering with CRISPR-Cas9. Science, 346(6213), 1258096.

    Article  PubMed  Google Scholar 

  156. Baulcombe, D. (2015). RNA silencing in plants. Nature, 431(7006), 356–363.

    Article  Google Scholar 

  157. Kamthan, A., Chaudhuri, A., Kamthan, M., & Datta, A. (2015). Genetically modified (GM) crops: Milestones and new advances in crop improvement. Theoretical and Applied Genetics, 128(9), 1649–1665.

    Google Scholar 

  158. Boettcher, M., & McManus, M. T. (2015). Choosing the right tool for the job: RNAi, TALEN, or CRISPR. Molecular Cell, 58(4), 575–585. https://doi.org/10.1016/j.molcel.2015.04.028.PMID:26000843;PMCID:PMC4441801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Khosravi, H. M., & Jantsch, M. F. (2021). Site-directed RNA editing: Recent advances and open challenges. RNA Biology, 18(sup1), 41–50. https://doi.org/10.1080/15476286.2021.1983288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Noland, J. E. (2017). Risk parameters and assessment of dietary DsRNA exposure in Folsomia Candida. Theses and Dissertations--Entomology, p. 37. https://uknowledge.uky.edu/entomology_etds/37

  161. Roberts, A. F., Devos, Y., Lemgo, G. N., & Zhou, X. (2015). Biosafety research for non-target organism risk assessment of RNAi-based GE plants. Frontiers in Plant Science, 6, 958. https://doi.org/10.3389/fpls.2015.00958

    Article  PubMed  PubMed Central  Google Scholar 

  162. Arpaia, S., Christiaens, O., Giddings, K., Jones, H., Mezzetti, B., Moronta-Barrios, F., & Dietz-Pfeilstetter, A. (2020). Biosafety of GM crop plants expressing dsRNA: Data requirements and EU regulatory considerations. Frontiers in Plant Science, 11, 940. https://doi.org/10.3389/fpls.2020.00940

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

DC, AJ, OG, and MM conceived the idea and designed the framework. DC, AJ, R, RR, SM, K, and SG collected pieces of literature and prepared the rough draft and artwork of the manuscript. OG, AJ, and MM supervised the writing and edited the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Anand Singh Jeena, Om Prakash Gupta or Mintu Ram Meena.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

All authors have their consent to participate.

Consent for Publication

All authors have their consent to publish their work.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhary, D., Jeena, A.S., Rohit et al. Advances in RNA Interference for Plant Functional Genomics: Unveiling Traits, Mechanisms, and Future Directions. Appl Biochem Biotechnol (2024). https://doi.org/10.1007/s12010-023-04850-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12010-023-04850-x

Keywords

Navigation