Skip to main content

Advertisement

Log in

Bacterially expressed dsRNA protects maize against SCMV infection

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

RNA interference (RNAi) is a sequence-specific, posttranscriptional gene silencing (PTGS) process in plants that is mediated by dsRNA homologous to the silenced gene(s). In this study, we report an efficient method to produce dsRNA using a bacterial expression system. Two fragments of the Sugarcane Mosaic Virus (SCMV) CP (coat protein) gene were amplified by RT-PCR, and cloned into the inverted-repeat cloning vector pUCCRNAi. The two recombinant plasmids were transformed individually into E. coli HT115, an RNase-III deficient strain, and dsRNA was induced by isopropyl-β-d-thiogalactopyranoside (IPTG). The crude extracts of E. coli HT115 containing large amounts of dsRNA were applied to plants as a spray and the experiment confirmed a preventative efficacy. Our findings demonstrated that spraying crude dsRNA-containing extracts inhibited SCMV infection, and the dsRNA derived from an upstream region (CP1) was more effective than was dsRNA derived from a downstream region (CP2) of the SCMV CP gene. The results provide a valuable tool for plant viral control using dsRNA and the PTGS approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agrawal N, Dasaradhi PV, Mohmmed A, Malhotra P, Bhatnagar RK, Mukherjee SK (2003) RNA interference: biology, mechanism, and applications. Microbiol Mol Biol Rev 67:657–685

    Article  CAS  PubMed  Google Scholar 

  • Anastasia M, Kriton K, Alexandra B, Sergia T, Martin T, Mina T (2004) Gene ration of transgenic potato plants highly resistant to potato virus Y (PVY) through RNA silencing. Mol Breed 14:185–197

    Article  Google Scholar 

  • Baulcombe D (2004) RNA silencing in plants. Nature 431:356–363

    Article  CAS  PubMed  Google Scholar 

  • Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366

    Article  CAS  PubMed  Google Scholar 

  • Bosher JM, Labouesse M (2000) RNA interference: genetic wand and genetic watchdog. Nat Cell Biol 2:E31–E36

    Article  CAS  PubMed  Google Scholar 

  • Brodersen P, Voinnet O (2006) The diversity of RNA silencing pathways in plants. Trends Genet 22(5):268–280

    Article  CAS  PubMed  Google Scholar 

  • Dorsett Y, Tuschl T (2004) siRNAs: applications in functional genomics and potential as therapeutics. Nat Rev Drug Discov 3:318–329

    Article  CAS  PubMed  Google Scholar 

  • Duan CG, Wang CH, Fang RX, Guo HS (2008) Artificial microRNAs highly accessible to targets confer efficient virus resistance in plants. J Virol 82:11084–11095

    Article  CAS  PubMed  Google Scholar 

  • Dykxhoorn DM, Novina CD, Sharp PA (2003) Killing the messenger: short RNAs that silence gene expression. Nat Rev Mol Cell Biol 4:457–467

    Article  CAS  PubMed  Google Scholar 

  • Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Dupluxes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411(6836):494–498

    Article  CAS  PubMed  Google Scholar 

  • Elbashir SM, Harborth J, Weber K, Tuschl T (2002) Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods 26(2):199–213

    Article  CAS  PubMed  Google Scholar 

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  CAS  PubMed  Google Scholar 

  • Goldbach R, Bucher E, Prins M (2003) Resistance mechanisms to plant viruses: an overview. Virus Res 92:207–212

    Article  CAS  PubMed  Google Scholar 

  • Grishok A, Sinskey JL, Sharp PA (2005) Transcriptional silencing of a transgene by RNAi in the soma of C. elegans. Genes Dev 19:683–696

    Article  CAS  PubMed  Google Scholar 

  • Hammond S, Bernstein E, Beach D, Hannon G (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404:29–293

    Article  Google Scholar 

  • Hannon GJ (2002) RNA interference. Nature 418:244–251

    Article  CAS  PubMed  Google Scholar 

  • Harborth J, Elbashir SM, Bechert K, Tuschl T, Weber K (2001) Identification of essential genes in cultured mammalian cells using small interfering RNAs. Cell Sci 114:4557–4565

    CAS  Google Scholar 

  • Kennerdell JR, Carthew RW (1998) Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell 95(7):1017–1026

    Article  CAS  PubMed  Google Scholar 

  • Li F, Ding SW (2006) Virus counterdefense: diverse strategies for evading the RNA silencing immunity. Annu Rev Microbiol 60:503–531

    Article  CAS  PubMed  Google Scholar 

  • Liu HM, Zhu CX, Zhu XP, Guo XQ, Song YZ, Wen FJ (2007) A link between PVYN CP gene-mediated virus resistance and transgene arrangement. J Phytopathol 155:676–682

    Article  CAS  Google Scholar 

  • Liu D, Guo ZK, Wan XQ, Yan PQ, Qiao C, Liu L (2009) RNA interference of TMV-CP and PVY-CP double gene to fusion and transform tobacco. Genomics Appl Biol 28(3):450–454

    CAS  Google Scholar 

  • Ma L (2008) Study on strategies of maize dwarf mosaic virus-resistance gene engineering. J Maize Sci 16(1):137–140

    CAS  Google Scholar 

  • Miao HQ, Di DP, Wu HP (1998) A preliminary study on effects of seed-borne virus rate and resistance level by inoculating MDMV in different growth periods. J Agricul Univ Hebei 21(1):27–30

    Google Scholar 

  • Sai JQ, Kang LY, Huang Z, Shi CL, Tian B, Xie YJ (1995) Nucleotide sequence of maize dwarf mosaic virus capsid protein gene and its expression in Escherichia coli. Sci China B 38(3):313–319

    CAS  PubMed  Google Scholar 

  • Tenllado F, Díaz-Ruíz JR (2001) Double-stranded RNA-mediated interference with plant virus infection. J Virol 75:12288–12297

    Article  CAS  PubMed  Google Scholar 

  • Tenllado F, Martínez-García B, Vargas M, Díaz-Ruíz JR (2003a) Crude extracts of bacterially expressed dsRNA can be used to protect plants against virus infections. BMC Biotechnol 3:3

    Article  PubMed  Google Scholar 

  • Tenllado F, Barajas D, Vargas M, Atencio FA, González-Jara P, Díaz-Ruíz JR (2003b) Transient expression of homologous hairpin RNA causes interference with plant virus infection and is overcome by a virus encoded suppressor of gene silencing. MPMI 16(2):149–158

    Article  CAS  PubMed  Google Scholar 

  • Tenllado F, Llave C, Díaz-Ruíz JR (2004) RNA interference as a new biotechnological tool for the control of virus diseases in plants. Virus Res 102:85–96

    Article  CAS  PubMed  Google Scholar 

  • Timmons L, Donald LC, Andrew F (2001) Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263:103–112

    Article  CAS  PubMed  Google Scholar 

  • Vargas M, Martínez-García B, Díaz-Ruíz JR, Tenllado F (2008) Transient expression of homologous hairpin RNA interferes with PVY transmission by aphids. Virol J 5:42

    Article  PubMed  Google Scholar 

  • Wang MB, Abbott D, Waterhouse PM (2000) A single copy of a virus derived transgene encoding dsRNA gives immunity to barley yellow dwarf virus. Mol Plant Pathol 1:401–410

    Article  Google Scholar 

  • Wang YX, Zhao RB, Ding JQ, Zhang XC, Chen JF, Wu K, Wu JY (2009) Development of novel markers of the resistance gene rscmv 1 to maize dwarf mosaic. J Henan Agricul Sci 8:84–87

    Google Scholar 

  • Waterhouse PM, Helliwell CA (2003) Exploring plant genomes by RNA-induced gene silencing. Nat Rev Genet 4(1):29–38

    Article  CAS  PubMed  Google Scholar 

  • Waterhouse PM, Wang MB, Lough T (2001) Gene silencing as an adaptive defense against viruses. Nature 411:834–842

    Article  CAS  PubMed  Google Scholar 

  • Wu JY, Ding JQ, Du YX, Xu YB, Zhang XC (2007) Genetic analysis and molecular mapping of two dominant complementary genes determining resistance to sugarcane mosaic virus in maize. Euphytica 156:355–364

    Article  CAS  Google Scholar 

  • Yin GH, Sun ZN, Liu N, Zhang L, Song YZ, Zhu CX, Wen FJ (2009) Production of double-stranded RNA for interference with TMV infection utilizing a bacterial prokaryotic expression system. Appl Microbiol Biotechnol 84(2):323–333

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Niu YB, Zhou XP (2005) Transgenic tobacco plants expressed dsRNA can prevent tobacco mosaic virus infection. J Agricul Biotechnol 13:226–229

    CAS  Google Scholar 

  • Zhang DY, Zhu CH, Cheng FX, He MY, Zhang ZH, Liu Y (2008) Crude extracts of bacterially expressed dsRNA can be used to protect tobaccos against CMV infections. Acta Phytopa Thologica Sinica 38(3):304–311

    Google Scholar 

  • Zhao MM, An DR, Zhao J, Huang GH, He ZH, Chen JY (2006) Transiently expressed short hairpin RNA targeting 126 kD a protein of Tobacco mosaic virus interferes with virus infection. Acta Biochimica et Biophysica Sinica 38(1):22–28

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beijiu Cheng.

Additional information

Communicated by D. Zaitlin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gan, D., Zhang, J., Jiang, H. et al. Bacterially expressed dsRNA protects maize against SCMV infection. Plant Cell Rep 29, 1261–1268 (2010). https://doi.org/10.1007/s00299-010-0911-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-010-0911-z

Keywords

Navigation