Skip to main content
Log in

Expression and Characterization of a Novel 1,3-Propanediol Dehydrogenase from Lactobacillus brevis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

1,3-Propanediol dehydrogenase (PDOR) is important in the biosynthesis of 1,3-propanediol. In the present study, the dhaT gene encoding PDOR was cloned from Lactobacillus brevis 6239 and expressed in Escherichia coli for the first time. Sequence analysis revealed that PDOR containing two Fe2+-binding motifs and a cofactor motif belongs to the type III alcohol dehydrogenase. The purified recombinant PDOR exhibited a single band of 42 kDa according to SDS-PAGE. Optimal temperatures and pH values of this dehydrogenase are 37 °C, 7.5 for reduction and 25 °C, 9.5 for oxidation, respectively. We found that PDOR was more stable in acid buffer than in alkaline condition, and 60 % of its relative activity still remained after a 2-h incubation at 37 °C. The activity of PDOR can be enhanced in the presence of Mn2+ or Fe2+ iron and inhibited by EDTA or PMSF by different degrees. The K m and V max of this dehydrogenase are 1.25 mM, 64.02 μM min−1 mg−1 for propionaldehyde and 2.26 mM, 35.05 μM min−1 mg−1 for 1,3-PD, respectively. Substrate specificity analysis showed that PDOR has a broad range of substrate specificities. The modeling superposition indicated that the structural differences may account for the diversity of PDORs’ properties. Thus, our PDOR is a potential candidate for facilitating the 1,3-PD biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Barbirato, F., Larguier, A., Conte, T., Astruc, S., & Bories, A. (1997). Sensitivity to pH, product inhibition, and inhibition by NAD+ of 1,3-propanediol dehydrogenase purified from Enterobacter agglomerans CNCM 1210. Archives of Microbiology, 168, 160–163.

    Article  CAS  Google Scholar 

  2. Boenigk, R., Bowien, S., & Gottschalk, G. (1993). Fermentation of glycerol to 1,3-propanediol in continuous cultures of Citrobacter freundii. Applied Microbiology and Biotechnology, 38, 453–457.

    Article  CAS  Google Scholar 

  3. Chatzifragkou, A., Dietz, D., Komaitis, M., Zeng, A. P., & Papanikolaou, S. (2010). Effect of biodiesel-derived waste glycerol impurities on biomass and 1,3-propanediol production of Clostridium butyricum VPI 1718. Biotechnology and Bioengineering, 107, 76–84.

    Article  CAS  Google Scholar 

  4. Daniel, R., Boenigk, R., & Gottschalk, G. (1995). Purification of 1,3-propanediol dehydrogenase from Citrobacter freundii and cloning, sequencing, and overexpression of the corresponding gene in Escherichia coli. Journal of Bacteriology, 177, 2151–2156.

    CAS  Google Scholar 

  5. Elleuche, S., Fodor, K., Klippel, B., von der Heyde, A., Wilmanns, M., & Antranikian, G. (2013). Structural and biochemical characterisation of a NAD(+)-dependent alcohol dehydrogenase from Oenococcus oeni as a new model molecule for industrial biotechnology applications. Applied Microbiology and Biotechnology, 97, 8963–8975.

    Article  CAS  Google Scholar 

  6. Fenghuan, W., Huijin, Q., He, H., & Tan, T. (2005). High-level expression of the 1,3-propanediol oxidoreductase from Klebsiella pneumoniae in Escherichia coli. Molecular Biotechnology, 31, 211–219.

    Article  Google Scholar 

  7. Johnson, E. A., & Lin, E. C. (1987). Klebsiella pneumoniae 1,3-propanediol: NAD+ oxidoreductase. Journal of Bacteriology, 169, 2050–2054.

    CAS  Google Scholar 

  8. Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., & Sternberg, M. J. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols, 10, 845–858.

    Article  CAS  Google Scholar 

  9. Luthi-Peng, Q., Dileme, F. B., & Puhan, Z. (2002). Effect of glucose on glycerol bioconversion by Lactobacillus reuteri. Applied Microbiology and Biotechnology, 59, 289–296.

    Article  CAS  Google Scholar 

  10. Ma, C., Zhang, L., Dai, J., & Xiu, Z. (2010). Relaxing the coenzyme specificity of 1,3-propanediol oxidoreductase from Klebsiella pneumoniae by rational design. Journal of Biotechnology, 146, 173–178.

    Article  CAS  Google Scholar 

  11. Malaoui, H., & Marczak, R. (2000). Purification and characterization of the 1-3-propanediol dehydrogenase of Clostridium butyricum E5. Enzyme and Microbial Technology, 27, 399–405.

    Article  CAS  Google Scholar 

  12. Marcal, D., Rego, A. T., Carrondo, M. A., & Enguita, F. J. (2009). 1,3-Propanediol dehydrogenase from Klebsiella pneumoniae: decameric quaternary structure and possible subunit cooperativity. Journal of Bacteriology, 191, 1143–1151.

    Article  CAS  Google Scholar 

  13. Montella, C., Bellsolell, L., Perez-Luque, R., Badia, J., Baldoma, L., Coll, M., & Aguilar, J. (2005). Crystal structure of an iron-dependent group III dehydrogenase that interconverts L-lactaldehyde and L-1,2-propanediol in Escherichia coli. Journal of Bacteriology, 187, 4957–4966.

    Article  CAS  Google Scholar 

  14. Oh, B. R., Seo, J. W., Heo, S. Y., Luo, L. H., Hong, W. K., Park, D. H., & Kim, C. H. (2013). Efficient production of 1,3-propanediol from glycerol upon constitutive expression of the 1,3-propanediol oxidoreductase gene in engineered Klebsiella pneumoniae with elimination of by-product formation. Bioprocess and Biosystems Engineering, 36, 757–763.

    Article  CAS  Google Scholar 

  15. Qi, X., Deng, W., Wang, F., Guo, Q., Chen, H., Wang, L., He, X., & Huang, R. (2013). Molecular cloning, co-expression, and characterization of glycerol dehydratase and 1,3-propanediol dehydrogenase from Citrobacter freundii. Molecular Biotechnology, 54, 469–474.

    Article  CAS  Google Scholar 

  16. Qi, X., Guo, Q., Wei, Y., Xu, H., & Huang, R. (2012). Enhancement of pH stability and activity of glycerol dehydratase from Klebsiella pneumoniae by rational design. Biotechnology Letters, 34, 339–346.

    Article  CAS  Google Scholar 

  17. Ringel, A. K., Wilkens, E., Hortig, D., Willke, T., & Vorlop, K. D. (2012). An improved screening method for microorganisms able to convert crude glycerol to 1,3-propanediol and to tolerate high product concentrations. Applied Microbiology and Biotechnology, 93, 1049–1056.

    Article  CAS  Google Scholar 

  18. Robert, X., & Gouet, P. (2014). Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Research, 42, W320–W324.

    Article  CAS  Google Scholar 

  19. Talarico, T. L., Axelsson, L. T., Novotny, J., Fiuzat, M., & Dobrogosz, W. J. (1990). Utilization of glycerol as a hydrogen acceptor by Lactobacillus reuteri: purification of 1,3-propanediol-NAD+ oxidoreductase. Applied and Environmental Microbiology, 56, 943–948.

    CAS  Google Scholar 

  20. van der Oost, J., Voorhorst, W. G., Kengen, S. W., Geerling, A. C., Wittenhorst, V., Gueguen, Y., & de Vos, W. M. (2001). Genetic and biochemical characterization of a short-chain alcohol dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus. European Journal of Biochemistry, 268, 3062–3068.

    Article  Google Scholar 

  21. Veiga-da-Cunha, M., & Foster, M. A. (1992). 1,3-Propanediol: NAD+ oxidoreductases of Lactobacillus brevis and Lactobacillus buchneri. Applied and Environmental Microbiology, 58, 2005–2010.

    CAS  Google Scholar 

  22. Zeng, A. P., & Sabra, W. (2011). Microbial production of diols as platform chemicals: recent progresses. Current Opinion in Biotechnology, 22, 749–757.

    Article  CAS  Google Scholar 

  23. Zhou, S., Catherine, C., Rathnasingh, C., Somasundar, A., & Park, S. (2013). Production of 3-hydroxypropionic acid from glycerol by recombinant Pseudomonas denitrificans. Biotechnology and Bioengineering, 110, 3177–3187.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 31571806 and 21006041), Project of Jiangsu University (No. 08JDG009), and Jiangsu Government Scholarship for Overseas Studies and PAPD.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xianghui Qi or Qi Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, X., Yun, J., Qi, Y. et al. Expression and Characterization of a Novel 1,3-Propanediol Dehydrogenase from Lactobacillus brevis . Appl Biochem Biotechnol 179, 959–972 (2016). https://doi.org/10.1007/s12010-016-2043-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2043-6

Keywords

Navigation