Skip to main content

Advertisement

Log in

Stereospecificity of Corynebacterium glutamicum 2,3-butanediol dehydrogenase and implications for the stereochemical purity of bioproduced 2,3-butanediol

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The stereochemistry of 2,3-butanediol (2,3-BD) synthesis in microbial fermentations is important for many applications. In this work, we showed that Corynebacterium glutamicum endowed with the Lactococcus lactis genes encoding α-acetolactate synthase and decarboxylase activities produced meso-2,3-BD as the major end product, meaning that (R)-acetoin is a substrate for endogenous 2,3-butanediol dehydrogenase (BDH) activity. This is curious in view of the reported absolute stereospecificity of C. glutamicum BDH for (S)-acetoin (Takusagawa et al. Biosc Biotechnol Biochem 65:1876–1878, 2001). To resolve this discrepancy, the enzyme encoded by butA Cg was produced in Escherichia coli and purified, and the stereospecific properties of the pure protein were examined. Activity assays monitored online by 1H-NMR using racemic acetoin and an excess of NADH showed an initial, fast production of (2S,3S)-2,3-BD, followed by a slow (∼20-fold lower apparent rate) formation of meso-2,3-BD. Kinetic parameters for (S)-acetoin, (R)-acetoin, meso-2,3-BD and (2S,3S)-BD were determined by spectrophotometric assays. V max values for (S)-acetoin and (R)-acetoin were 119 ± 15 and 5.23 ± 0.06 μmol min−1 mg protein−1, and K m values were 0.23 ± 0.02 and 1.49 ± 0.07 mM, respectively. We conclude that C. glutamicum BDH is not absolutely specific for (S)-acetoin, though this is the preferred substrate. Importantly, the low activity of BDH with (R)-acetoin was sufficient to support high yields of meso-2,3-BD in the engineered strain C. glutamicum ΔaceEΔpqoΔldhA(pEKEx2-als,aldB,butA Cg). Additionally, we found that the BDH activity was nearly abolished upon inactivation of butA Cg (from 0.30 ± 0.03 to 0.004 ± 0.001 μmol min−1 mg protein−1), indicating that C. glutamicum expresses a single BDH under the experimental conditions examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Celińska E, Grajek W (2009) Biotechnological production of 2,3-butanediol - current state and prospects. Biotechnol Adv 27:715–725

    Article  PubMed  Google Scholar 

  • Chen C, Wei D, Shi J, Wang M, Hao J (2014) Mechanism of 2,3-butanediol stereoisomer formation in Klebsiella pneumoniae. Appl Microbiol Biotechnol 98:4603–4613

    Article  CAS  PubMed  Google Scholar 

  • Crout DHG, Rathbone DL (1988) Biotransformations with acetolactate decarboxylase: unusual conversions of both substrate enantiomers into products of high optical purity. J Chem Soc Chem Commun (2):98

  • Crow VL (1990) Properties of 2,3-butanediol dehydrogenases from Lactococcus lactis subsp. lactis in relation to citrate fermentation. Appl Environ Microbiol 56:1656–1665

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dickschat JS, Wickel S, Bolten CJ, Nawrath T, Schulz S, Wittmann C (2010) Pyrazine biosynthesis in Corynebacterium glutamicum. Eur J Org Chem 2010:2687–2695

    Article  Google Scholar 

  • Eikmanns BJ, Kleinertz E, Liebl W, Sahm H (1991) A family of Corynebacterium glutamicum/Escherichia coli shuttle vectors for cloning, controlled gene expression, and promoter probing. Gene 102:93–98

    Article  CAS  PubMed  Google Scholar 

  • Gao J, Yang H-H, Feng X-H, Li S, Xu H (2013) A 2,3-butanediol dehydrogenase from Paenibacillus polymyxa ZJ-9 for mainly producing R,R-2,3-butanediol: purification, characterization and cloning. J Basic Microbiol 53:733–741

    Article  CAS  PubMed  Google Scholar 

  • Gaspar P, Neves AR, Gasson MJ, Shearman CA, Santos H (2011) High yields of 2,3-butanediol and mannitol in Lactococcus lactis through engineering of NAD+ cofactor recycling. Appl Environ Microbiol 77:6826–6835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez E, Fernandez MR, Larroy C, Sola L, Pericas MA, Pares X, Biosca JA (2000) Characterization of a (2R,3R)-2,3-butanediol dehydrogenase as the Saccharomyces cerevisiae YAL060W gene product: disruption and induction of the gene. J Biol Chem 275:35876–35885

    Article  CAS  PubMed  Google Scholar 

  • Green MR, Sambrook J (2012) Molecular cloning: a laboratory manual, 4th edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Hao W, Ji F, Wang J, Zhang Y, Wang T, Bao Y (2014) Biochemical characterization of unusual meso-2,3-butanediol dehydrogenase from a strain of Bacillus subtilis. J Mol Catal B Enzym 109:184–190

    Article  CAS  Google Scholar 

  • Häßler T, Schieder D, Pfaller R, Faulstich M, Sieber V (2012) Enhanced fed-batch fermentation of 2,3-butanediol by Paenibacillus polymyxa DSM 365. Bioresour Technol 124:237–244

    Article  PubMed  Google Scholar 

  • Höhn-Bentz H, Radler F (1978) Bacterial 2,3-butanediol dehydrogenases. Arch Microbiol 116:197–203

    Article  PubMed  Google Scholar 

  • Hugenholtz J, Starrenburg MC (1992) Diacetyl production by different strains of Lactococcus lactis subsp. lactis var. diacetylactis and Leuconostoc spp. Appl Microbiol Biotechnol 38:17–22

    Article  CAS  Google Scholar 

  • Ji X-J, Huang H, Ouyang P-K (2011) Microbial 2,3-butanediol production: a state-of-the-art review. Biotechnol Adv 29:351–364

    Article  CAS  PubMed  Google Scholar 

  • Johansen E, Kibenich A (1992) Isolation and characterization of IS1165, an insertion sequence of Leuconostoc mesenteroides subsp. cremoris and other lactic acid bacteria. Plasmid 27:200–206

    Article  CAS  PubMed  Google Scholar 

  • Jojima T, Igari T, Moteki Y, Suda M, Yukawa H, Inui M (2015) Promiscuous activity of (S,S)-butanediol dehydrogenase is responsible for glycerol production from 1,3-dihydroxyacetone in Corynebacterium glutamicum under oxygen-deprived conditions. Appl Microbiol Biotechnol 99:1427–1433

    Article  CAS  PubMed  Google Scholar 

  • Jung M-Y, Ng CY, Song H, Lee J, M-K O (2012) Deletion of lactate dehydrogenase in Enterobacter aerogenes to enhance 2,3-butanediol production. Appl Microbiol Biotechnol 95:461–469

    Article  CAS  PubMed  Google Scholar 

  • Lian J, Chao R, Zhao H (2014) Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R,3R)-butanediol. Metab Eng 23:92–99

    Article  CAS  PubMed  Google Scholar 

  • Liebl W, Bayerl A, Schein B, Stillner U, Schleifer KH (1989) High efficiency electroporation of intact Corynebacterium glutamicum cells. FEMS Microbiol Lett 53:299–303

    Article  CAS  PubMed  Google Scholar 

  • Liu JC, Siu HJ, Brock-Nannestad T, Chen J, Lee SY, Solem C, Jensen PR (2016) Combining metabolic engineering and biocompatible chemistry for high-yield production of homo-diacetyl and homo-(S,S)-2,3-butanediol. Metab Eng 36:57–67

    Article  CAS  PubMed  Google Scholar 

  • Marlow VA, Rea D, Najmudin S, Wills M, Fülöp V (2013) Structure and mechanism of acetolactate decarboxylase. ACS Chem Biol 8:2339–2344

    Article  CAS  PubMed  Google Scholar 

  • Nicholson WL (2008) The Bacillus subtilis ydjL (bdhA) gene encodes acetoin reductase/2,3-butanediol dehydrogenase. Appl Environ Microbiol 74:6832–6838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park C, Lu M, Yun S, Park K, Lee J (2013) Effect of pH on the metabolic flux of Klebsiella oxytoca producing 2,3-butanediol in continuous cultures at different dilution rates. Bioprocess Biosyst Eng 36:845–855

    Article  CAS  PubMed  Google Scholar 

  • Qi G, Kang Y, Li L, Xiao A, Zhang S, Wen Z, Xu D, Chen S (2014) Deletion of meso-2,3-butanediol dehydrogenase gene budC for enhanced D-2,3-butanediol production in Bacillus licheniformis. Biotechnol Biofuels 7:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Radoš D, Carvalho AL, Wieschalka S, Neves AR, Blombach B, Eikmanns BJ, Santos H (2015) Engineering Corynebacterium glutamicum for the production of 2,3-butanediol. Microb Cell Factories 14(1):171

    Article  Google Scholar 

  • Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G, Pühler A (1994) Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145:69–73

    Article  PubMed  Google Scholar 

  • Stormer FC (1975) 2,3-Butanediol biosynthetic system in Aerobacter aerogenes. Methods Enzymol 41:518–532

    Article  CAS  PubMed  Google Scholar 

  • Takusagawa Y, Otagiri M, Ui S, Ohtsuki T, Mimura A, Ohkuma M, Kudo T (2001) Purification and characterization of L-2,3-butanediol dehydrogenase of Brevibacterium saccharolyticum C-1012 expressed in Escherichia coli. Biosci Biotechnol Biochem 65:1876–1878

    Article  CAS  PubMed  Google Scholar 

  • Ui S, Takusagawa Y, Sato T, Ohtsuki T, Mimura A, Ohkuma M, Kudo T (2004) Production of L-2,3-butanediol by a new pathway constructed in Escherichia coli. Lett Appl Microbiol 39:533–537

    Article  CAS  PubMed  Google Scholar 

  • Van der Rest ME, Lange C, Molenaar D (1999) A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl Microbiol Biotechnol 52:541–545

    Article  CAS  PubMed  Google Scholar 

  • Voloch M, Ladisch MR, Rodwell VW, Tsao GT (1983) Reduction of acetoin to 2,3-butanediol in Klebsiella pneumoniae: a new model. Biotechnol Bioeng 25:173–183

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Song Q, Yu M, Wang Y, Xiong B, Zhang Y, Zheng J, Ying X (2014a) Characterization of a stereospecific acetoin(diacetyl) reductase from Rhodococcus erythropolis WZ010 and its application for the synthesis of (2S,3S)-2,3-butanediol. Appl Microbiol Biotechnol 98:641–650

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Tao F, Xu P (2014b) Glycerol dehydrogenase plays a dual role in glycerol metabolism and 2,3-butanediol formation in Klebsiella pneumoniae. J Biol Chem 289:6080–6090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang A, Xu Y, Ma C, Gao C, Li L, Wang Y, Tao F, Xu P (2012) Efficient 2,3-butanediol production from cassava powder by a crop-biomass-utilizer, Enterobacter cloacae subsp. dissolvens SDM. PLoS One 7:e40442. doi:10.1371/journal.pone.0040442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westerfeld WW (1945) A colorimetric determination of paraldehyde. J Lab Clin Med 30:1076

    CAS  PubMed  Google Scholar 

  • Wieschalka S, Blombach B, Eikmanns BJ (2012) Engineering Corynebacterium glutamicum for the production of pyruvate. Appl Microbiol Biotechnol 94:449–459

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Chu H, Gao C, Tao F, Zhou Z, Li K, Li L, Ma C, Xu P (2014) Systematic metabolic engineering of Escherichia coli for high-yield production of fuel bio-chemical 2,3-butanediol. Metab Eng 23:22–33

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Kim B, Kim H, Kweon Y, Lee S, Lee J (2015) Industrial production of 2,3-butanediol from the engineered Corynebacterium glutamicum. Appl Biochem Biotechnol 176:2303–2313

    Article  CAS  PubMed  Google Scholar 

  • Yu M, Huang M, Song Q, Shao J, Ying X (2015a) Characterization of a (2R,3R)-2,3-Butanediol dehydrogenase from Rhodococcus erythropolis WZ010. Molecules 20:7156–7173

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Xu Q, Zhan S, Li Y, Lin H, Sun S, Sha L, Hu K, Guan X, Shen Y (2014) A new NAD(H)-dependent meso-2,3-butanediol dehydrogenase from an industrially potential strain Serratia marcescens H30. Appl Microbiol Biotechnol 98:1175–1184

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Yang Y, Sun J, Shen Y, Wei D, Zhu J, Chu J (2010) Microbial production of 2,3-butanediol by a mutagenized strain of Serratia marcescens H30. Bioresour Technol 101:1961–1967

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Technical assistance by Sara Rebelo is gratefully acknowledged. The generous advice provided by Dr. Nuno Borges was very important to the development of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena Santos.

Ethics declarations

Funding

This work was supported by Fundação para a Ciência e a Tecnologia, Portugal, project MOSTMICRO UID/CBQ/04612/2013. The NMR spectrometers are part of the National NMR Facility, supported by Fundação para a Ciência e a Tecnologia (RECI/BBB-BQB/0230/2012).

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

ESM 1

(PDF 339 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radoš, D., Turner, D.L., Catarino, T. et al. Stereospecificity of Corynebacterium glutamicum 2,3-butanediol dehydrogenase and implications for the stereochemical purity of bioproduced 2,3-butanediol. Appl Microbiol Biotechnol 100, 10573–10583 (2016). https://doi.org/10.1007/s00253-016-7860-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7860-6

Keywords

Navigation