Skip to main content
Log in

Characterization of 1,3-propanediol oxidoreductase (DhaT) from Klebsiella pneumoniae J2B

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

1,3-propanediol oxidoreductase (DhaT) of Klebsiella pneumoniae converts 3-hydroxypropionaldehyde (3-HPA) to 1,3-propanediol (1,3-PD) during microbial production of 1,3-PD from glycerol. In this study, DhaT from newly isolated K. pneumoniae J2B was cloned, expressed, purified, and studied for its kinetic properties. It showed, on its physiological substrate 3-HPA, higher activity than similar aldehydes such as acetaldehyde, propionaldehyde and butyraldehyde. The turnover numbers (k cat , 1/s) were estimated as 59.4 for the forward reaction (3-HPA to 1,3-PD at pH 7.0) and 10.0 for the reverse reaction (1,3-PD to 3-HPA at pH 9.0). The Michaelis constants (K m , mM) were 0.77 (for 3-HPA) and 0.03 (for NADH) for the forward reaction (at pH 7.0), and 7.44 (for 1,3-PD) and 0.23 (for NAD+) for the reverse reaction (at pH 9.0). Between these forward and reverse reactions, the optimum temperature and pH were significantly different (37°C and 7.0 vs. 55°C and 9.0, respectively). These results indicate that, under physiological conditions, DhaT mostly catalyzes the forward reaction. The enzyme was seriously inhibited by heavy metal ions such as Ag+ and Hg2+. DhaT was highly unstable when incubated with its own substrate 3-HPA, indicating the necessity of enhancing its stability for improved 1,3-PD production from glycerol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zeng, A. P. and H. Biebl (2002) Bulk chemicals from biotechnology: the case of 1,3-propanediol production and the new trends. Adv. Biochem. Eng. Biotechnol. 74: 239–259.

    CAS  Google Scholar 

  2. Biebl, H., K. Menzel, A. P. Zeng, and W. D. Deckwer (1999) Microbial production of 1,3-propanediol. Appl. Microbiol. Biotechnol. 52: 289–297.

    Article  CAS  Google Scholar 

  3. Nakamura, C. E. and G. M. Whited (2003) Metabolic engineering for the microbial production of 1,3-propanediol. Curr. Opin. Biotechnol. 14: 454–459.

    Article  CAS  Google Scholar 

  4. Schaefer, L., T. A. Auchtung, K. E. Hermans, D. Whitehead, B. Borhan, and R. A. Britton (2010) The antimicrobial compound reuterin (3-hydroxypropionaldehyde) induces oxidative stress via interaction with thiol groups. Microbiol. 156: 1589–1599.

    Article  CAS  Google Scholar 

  5. Barbirato, F., P. Soucaille, and A. Bories (1996) Physiologic mechanisms involved in accumulation of 3-hydroxypropionaldehyde during fermentation of glycerol by Enterobacter agglomerans. Appl. Environ. Microbiol. 62: 4405–4409.

    CAS  Google Scholar 

  6. Hao, J., W. Wang, J. Tian, J. Li, and D. Liu (2008) Decrease of 3-hydroxypropionaldehyde accumulation in 1,3-propanediol production by over-expressing dhaT gene in Klebsiella pneumoniae TUAC01. J. Ind. Microbiol. Biotechnol. 35: 735–741.

    Article  CAS  Google Scholar 

  7. Fenghuan, W., Q. Huijin, H. He, and T. Tan (2005) High-level expression of the 1,3-propanediol oxidoreductase from Klebsiella pneumoniae in Escherichia coli. Mol Biotechnol. 31: 21–29.

    Article  Google Scholar 

  8. Johnson, E. A. and E. C. Lin (1987) Klebsiella pneumoniae 1,3-propanediol: NAD+ oxidoreductase. J. Bacteriol. 169: 2050–2054.

    CAS  Google Scholar 

  9. Hall, R. H. and E. S. Stern (1950) Acid-catalyzed hydration of acrylaldehyde: Kinetics of the reaction and isolation of ß-hydroxypropionaldehyde. J. Chem. Soc. 490–498.

    Google Scholar 

  10. Sambrook, J. and D. Russell (2001) Molecular cloning: A Laboratory Manual. 3rd edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA.

    Google Scholar 

  11. Arasu, M. V., V. Kumar, A. Somasundar, S. Hyohak, R. S. Celladurai, H. J. Lee, D. Seung and S. Park (2011) Isolation and characterization of the new Klebsiella pneumoniae J2B strain showing improved growth characteristics with reduced lipopolysaccharide formation Biotechnol. Bioproc. Eng. 16: 1134–1143.

    Article  CAS  Google Scholar 

  12. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Natur. 227: 680–685.

    Article  CAS  Google Scholar 

  13. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Article  CAS  Google Scholar 

  14. Webb, B. and A. Sali (2014) Comparative protein structure modeling with modeller. Curr. Protoc. Bioinformatics. 47: 5.6.1-5.6.32.

  15. Shen, M. Y. and A. Sali (2006) Statistical potential for assessment and prediction of protein structures. Protein Sci. 15: 2507–2524.

    Article  CAS  Google Scholar 

  16. Lovell, S. C., I. W. Davis, W. B. III Arendall, P. I. D. Bakker, J. M. Word, M. G. Prisant, J. S. Richardson, and D. C. Richardson (2003) Structure validation by C alpha geometry: phi, psi and C beta deviation. Proteins. 50: 437–450.

    Article  CAS  Google Scholar 

  17. Eisenberg, D., R. Luthy, and J. U. Bowie (1997) VERIFY3D: Assessment of protein models with three-dimensional profiles. Methods Enzymol. 277: 396–404.

    Article  CAS  Google Scholar 

  18. Dong, X. and Y. Zhang (2011) Improving the physical realism and structural accuracy of protein models by a two-step atomiclevel energy minimization. Biophys. J. 101: 2525–2534.

    Article  CAS  Google Scholar 

  19. Morris, G. M., R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell, and A. J. Olson (2009) Autodock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 30: 2785–2791.

    Article  CAS  Google Scholar 

  20. Yang, J., A. Roy, and Y. Zhang (2013) Protein-ligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment. Bioinformatics. 29: 2588–2595.

    Article  CAS  Google Scholar 

  21. Marcal, D., A. T. Rego, M. A. Carrondo, and F. J. Enguita (2009) 1,3-Propanediol dehydrogenase from Klebsiella pneumoniae: Decameric quaternary structure and possible subunit cooperativity. J. Bacteriol. 19: 1143–1151.

    Article  CAS  Google Scholar 

  22. Ma., C., L. Zhang, J. Dai, and Z. Xiu (2010) Relaxing the coenzyme specificity of 1,3-propanediol oxidoreductase from Klebsiella pneumoniae by rational design. J. Biotechnol. 146: 173–178.

    Article  CAS  Google Scholar 

  23. Daniel, R., R. Boenigk, and G. Gottschalk (1995) Purification of 1,3-propanediol dehydrogenase from Citrobacter freundii and cloning, sequencing, and overexpression of the corresponding gene in Escherichia coli. J. Bacteriol. 177: 2151–2156.

    CAS  Google Scholar 

  24. Malaoui, H. and R. Marczak (2000) Purification and characterization of the 1,3-propanediol dehydrogenase of Clostridium butyricum E5. Enz. Microb. Technol. 27: 399–405.

    Article  CAS  Google Scholar 

  25. Barbirato, F., A. Larguier, T. Conte, S. Astruc, and A. Bories (1997) Sensitivity to pH, product inhibition, and inhibition by NAD+ of 1,3-propanediol dehydrogenase purified from Enterobacter agglomerans CNCM 1210. Arch. Microbiol. 168: 160–163.

    Article  CAS  Google Scholar 

  26. Elleuche, S., K. Fodor, B. Klippel, A. von der Heyde, M. Wilmanns, and G. Antranikian G (2013) Structural and biochemical characterization of a NAD-dependent alcohol dehydrogenase from Oenococcus oeni as a new model molecule for industrial biotechnology applications. Appl. Microbiol. Biotechnol. 97: 8963–8975.

    Article  CAS  Google Scholar 

  27. Li, W., I. Ng, B. Fang, J. Yu, and G. Zhang (2011) Codon optimization of 1,3-propanediol oxidoreductase expression in Escherichia coli and enzymatic properties. Electron. J. Biotechnol. 14: 7-7.

  28. Qi, X., W. Deng, F. Wang, Q. Guo, H. Chen, L. Wang, X. He, and R. Huang (2013) Molecular cloning, co-expression, and characterization of glycerol dehydratase and 1,3-propanediol dehydrogenase from Citrobacter freundii. Mol. Biotechnol. 54: 469–474.

    Article  CAS  Google Scholar 

  29. Yan, Z., A. Somasundar, S. Eunhee, S. K. Ainala, S. G. Lee, B. Madan, J. H. Xu, and S. Park (2014) NADH-dependent lactate dehydrogenase from Alcaligenes eutrophus H16 reduces 2-oxoadipate to 2-hydroxyadipate. Biotechnol. Bioproc. Eng. 19: 1048–1057.

    Article  CAS  Google Scholar 

  30. Vollenweider, S., S. Evers, K. Zurbriggen, and C. Lacroix (2010) Unraveling the hydroxypropionaldehyde (HPA) system: An active antimicrobial agent against human pathogens. J. Agric. Food Chem. 58: 10315–10322.

    Article  CAS  Google Scholar 

  31. Talarico, T. L., L. T. Axelsson, J. Novotny, M. Fiuzat, and W. J. Dobrogosz (1990) Utilization of glycerol as a hydrogen acceptor by Lactobacillus reuteri: Purification of 1,3-propanediol: NAD oxidoreductase. Appl. Environ. Microbiol. 56: 943–948.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunghoon Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lama, S., Ro, S.M., Seol, E. et al. Characterization of 1,3-propanediol oxidoreductase (DhaT) from Klebsiella pneumoniae J2B. Biotechnol Bioproc E 20, 971–979 (2015). https://doi.org/10.1007/s12257-015-0635-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-015-0635-6

Keywords

Navigation