Skip to main content
Log in

Enhancement of pH stability and activity of glycerol dehydratase from Klebsiella pneumoniae by rational design

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Glycerol dehydratase (GDHt) is a key and rate-limiting enzyme in the pathway of 1,3-propanediol (1,3-PD) synthesis. The improvement of GDHt’s stability and enzymatic activity is desirable for the biosynthesis of 1,3-PD. The gldABC gene encoding GDHt of Klebsiella pneumoniae was cloned and expressed in Escherichia coli XL10-Gold, and the mutation sites of GDHt were obtained through prediction by PoPMuSiC program. Consequently, two mutants (KpG60 and KpG525) were developed by rational design through site-mutagenesis based on 3D structure which was constructed from homology modeling. Analyses of enzymatic properties showed that pH stability of the mutants was about 1.25–2 times higher than that of the wild type, and specific activity, Vmax and Kcat/Km of KpG525 were about 1.5–2 times higher than those of the wild type. This work presented a simple and useful measure to improve the performance of industrial enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anand P, Saxena RK, Marwah RG (2011) A novel downstream process for 1,3-propanediol from glycerol-based fermentation. Appl Microbiol Biotechnol 90(4):1267–1276

    Article  PubMed  CAS  Google Scholar 

  • Barbirato F, Larguier A, Conte T, Astruc S, Bories A (1210) Sensitivity to pH, product inhibition, inhibition by NAD+ of 1,3-propanediol dehydrogenase purified from Enterobacter agglomerans CNCM. Arch Microbiol 168(2):160–163

    Article  Google Scholar 

  • Fan HY, Morgan SA, Brechun KE, Chen YY, Jaikaran AS, Woolley GA (2011) Improving a designed photocontrolled DNA-binding protein. Biochemistry 50(7):1226–1237

    Article  PubMed  CAS  Google Scholar 

  • Gilis D, Rooman M (2000) PoPMuSiC, an algorithm for predicting protein mutant stability changes: application to prion proteins. Protein Eng 13(12):849–856

    Article  PubMed  CAS  Google Scholar 

  • Jin P, Li S, Lu SG, Zhu JG, Huang H (2011) Improved 1,3-propanediol production with hemicellulosic hydrolysates (corn straw) as cosubstrate: impact of degradation products on Klebsiella pneumoniae growth and 1,3-propanediol fermentation. Bioresour Technol 102(2):1815–1821

    Article  PubMed  CAS  Google Scholar 

  • Kwasigroch JM, Gilis D, Dehouck Y, Rooman M (2002) PoPMuSiC, rationally designing point mutations in protein structures. Bioinformatics 18(12):1701–1702

    Article  PubMed  CAS  Google Scholar 

  • Liang Q, Zhang H, Li S, Qi Q (2010) A novel downstream process for 1,3-propanediol to 1,3-propanediol in Escherichia coli. Appl Microbiol Biotechnol 89(1):57–62

    Article  PubMed  Google Scholar 

  • Liu H, Xu Y, Zheng Z, Liu D (2011) 1,3-Propanediol and its copolymers: research, development and industrialization. Biotechnol J 5(11):1137–1148

    Article  Google Scholar 

  • Macis L, Daniel R, Gottschalk G (1998) Properties and sequence of the coenzyme B12-dependent glycerol dehydratase of Clostridium pasteurianum. FEMS Microbiol Lett 164:21–28

    Article  PubMed  CAS  Google Scholar 

  • Malaoui H, Marczak R (2001) Separation and characterization of the 1,3-propanediol and glycerol dehydrogenase activities from Clostridium butyricum E5 wild-type and mutant D. J Appl Microbiol 90(6):1006–1014

    Article  PubMed  CAS  Google Scholar 

  • Minagawa H, Shimada J, Kaneko H (2003) Effect of mutations at Glu160 and Val198 on the thermostability of lactate oxidase. Eur J Biochem 270(17):3628–3633

    Article  PubMed  CAS  Google Scholar 

  • Qi X, Sun L, Luo Z, Wu J, Meng X, Tang Y, Wei Y, Huang R (2006) Rational design of glycerol dehydratase: swapping the genes encoding the subunits of glycerol dehydratase to improve enzymatic properties. Chin Sci Bull 51(24):2977–2985

    Article  CAS  Google Scholar 

  • Qi X, Chen Y, Jiang K, Zuo W, Luo Z, Wei Y, Du L, Wei H, Huang R, Du Q (2009) Saturation-mutagenesis in two positions distant from active site of a Klebsiella pneumoniae glycerol dehydratase identifies some highly active mutants. J Biotechnol 144(1):43–50

    Article  PubMed  CAS  Google Scholar 

  • Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31(13):3381–3385

    Article  PubMed  CAS  Google Scholar 

  • Seyfried M, Daniel R, Gottschalk G (1996) Cloning, sequencing, and overexpression of the genes encoding coenzyme B12-dependent glycerol dehydratase of Citrobacter freundii. J Bacteriol 178(19):5793–5796

    PubMed  CAS  Google Scholar 

  • Tobimatsu T, Azuma M, Matsubara H, Takatori H, Niida T, Nishimoto K, Satoh H, Hayashi R, Toraya T (1996) Cloning, sequencing, and high level expression of the genes encoding adenosylcobalamin-dependent glycerol dehydrase of Klebsiella pneumoniae. J Biol Chem 271(37):22352–22357

    Article  PubMed  CAS  Google Scholar 

  • Yamanishi M, Yunoki M, Tobimatsu T, Sato H, Matsui J, Dokiya A, Iuchi Y, Oe K, Suto K, Shibata N, Morimoto Y, Yasuoka N, Toraya T (2002) The crystal structure of coenzyme B12-dependent glycerol dehydratase in complex with cobalamin and propane-1,2-diol. Eur J Biochem 269(18):4484–4494

    Article  PubMed  CAS  Google Scholar 

  • Yang G, Tian J, Li J (2006) Fermentation of 1,3-propanediol by a lactate deficient mutant of Klebsiella oxytoca under microaerobic conditions. Appl Microbiol Biotechnol 73(5):1017–1024

    Article  PubMed  Google Scholar 

  • Yuanyuan Z, Yang C, Baishan F (2004) Cloning and sequence analysis of the dhaT gene of the 1,3-propanediol regulon from Klebsiella pneumoniae. Biotechnol Lett 26(3):251–255

    Article  PubMed  Google Scholar 

  • Zhang SB, Wu ZL (2011) Identification of amino acid residues responsible for increased thermostability of feruloyl esterase A from Aspergillus niger using the PoPMuSiC algorithm. Bioresour Technol 102(2):2093–2096

    Article  PubMed  CAS  Google Scholar 

  • Zheng ZM, Xu YZ, Wang TP, Dong CQ, Yang YP, Liu DH (2010) Ammonium and phosphate limitation in 1,3-propanediol production by Klebsiella pneumoniae. Biotechnol Lett 32(2):289–294

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. Yong Wang of Jiangsu University for his revision to the manuscript. This work was supported by the National Natural Science Foundation of China under Grant No. 21006041, the Postdoctoral Foundation of Jiangsu Province under Grant No. 0901012B and the Scientific Research Promotion Fund for the Talents of Jiangsu University under Grant No. 08JDG009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianghui Qi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, X., Guo, Q., Wei, Y. et al. Enhancement of pH stability and activity of glycerol dehydratase from Klebsiella pneumoniae by rational design. Biotechnol Lett 34, 339–346 (2012). https://doi.org/10.1007/s10529-011-0775-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-011-0775-5

Keywords

Navigation