Skip to main content
Log in

Cardiovascular Magnetic Resonance Imaging Tissue Characterization in Non-ischemic Cardiomyopathies

  • Imaging (Q Truong, Section Editor)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Abstract

Purpose of review

In this review, we will focus the role of CMR in dilated cardiomyopathy and genetic cardiomyopathy.

Recent findings

Non-invasive imaging plays a crucial rule in the diagnostic workup of cardiomyopathies. In these entities, echocardiography is the first-line imaging tool for diagnostic assessment, but CMR has the unique capability to identify and differentiate the underlying pathology, mainly through tissue characterization, even if the EF is preserved. Myocardial tissue characterization is crucial for adequate prognostication and guiding of therapy. Visual, semi-quantitative, and quantitative methods allow the accurate description of myocardial pathologies such as edema, hyperemia, hypoperfusion, and fibrosis. Basic CMR protocols and standardized post-processing methods are well established and routinely performed.

Summary

CMR has the ability to characterize concomitantly the myocardial tissue characteristics using techniques such as LGE, T1 mapping with ECV measurements, and T2 mapping, and also deformation functional parameters (i.e., strain) and thus provides important insights into the underlying etiology of cardiomyopathy and prognosis. The results of several studies show that CMR findings are associated with clinical outcomes and can inform the management of these patients, including longitudinal assessment of treatment response. CMR should be routinely used in the workup of patients with non-ischemic cardiomyopathy for both diagnostic and prognostic applications.

The presence of LV dilatation and systolic dysfunction in the absence of significant coronary artery disease together with valvular diseases represents a significant etiology to cause cardiomyopathy in cardiology practices. Additionally, other etiologies as infiltrative heart diseases, channelopathy/genetic cardiomyopathy and cardiac involvement in systemic diseases and oncologic process complete the spectrum that may range from isolated LV involvement or biventricular failure. Non-invasive imaging plays a crucial rule in the diagnostic workup of cardiomyopathies. In these entities, echocardiography is the first-line imaging tool for diagnostic assessment, but CMR has the unique capability to identify and differentiate the underlying pathology, mainly through tissue characterization, even if the EF is preserved. Myocardial tissue characterization is crucial for adequate prognostication and guiding of therapy. Visual, semi-quantitative, and quantitative methods allow the accurate description of myocardial pathologies such as edema, hyperaemia, hypoperfusion, and fibrosis. Basic CMR protocols and standardized post-processing methods are well established and routinely performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Bull S, White SK, Piechnik SK, Flett AS, Ferreira VM, Loudon M, et al. Human non-contrast T1 values and correlation with histology in diffuse fibrosis. Heart. 2013;99:932–7.

    Article  PubMed  Google Scholar 

  2. • Haaf P, Garg P, Messroghli DR, Broadbent DA, Greenwood JP, Plein S. Cardiac T1 Mapping and Extracellular Volume (ECV) in clinical practice: a comprehensive review. J Cardiovasc Magn Reson. 2016;18(1):89 Reader can find these references helpful to understand the role of CMR in different disease process with different and newer CMR applications.

  3. Brown PF, Miller C, Di Marco A, et al. Towards cardiac MRI based risk stratification in idiopathic dilated cardiomyopathy. Heart. 2019;105:270–5.

    Article  PubMed  Google Scholar 

  4. Gulati A, Jabbour A, Ismail TF, Guha K, Khwaja J, Raza S, et al. Association of fibrosis with mortality and sudden cardiac death in patients with nonischemic dilated cardiomyopathy. JAMA. 2013;309:896–908.

    Article  CAS  PubMed  Google Scholar 

  5. Iles LM, Ellims AH, Llewellyn H, Hare JL, Kaye DM, McLean CA, et al. Histological validation of cardiac magnetic resonance analysis of regional and diffuse interstitial myocardial fibrosis. Eur Heart J Cardiovasc Imaging. 2015;16:14–22.

    Article  PubMed  Google Scholar 

  6. Moon JC, Messroghli DR, Kellman P, Piechnik SK, et al. Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. JCMR. 2013;15:92.

    Google Scholar 

  7. Kammerlander AA, Marzluf BA, Zotter- Tufaro C, et al. T1 mapping by CMR imaging: from histological validation to clinical implication. JACC Card Imag 2016 Jan;9(1):14–23.

  8. McCrohon JA, Moon JC, Prasad SK, McKenna WJ, Lorenz CH, Coats AJ, et al. Differentiation of heart failure related to dilated cardiomyopathy and coronary artery disease using gadolinium-enhanced cardiovascular magnetic resonance. Circulation. 2003;108:54–9.

    Article  CAS  PubMed  Google Scholar 

  9. Maron BJ, Towbin JA, Thiene G, et al. Contemporary definitions and classification of the cardio- myopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; quality of care and outcomes re- search and functional genomics and translation- al biology interdisciplinary working groups; and council on epidemiology and prevention. Circulation. 2006;113:1807–16.

    Article  PubMed  Google Scholar 

  10. Shehata ML, Turkbey EB, Vogel-Claussen J, Bluemke DA. Role of cardiac magnetic resonance imaging in assessment of nonischemic cardiomyo- pathies. Top Magn Reson Imaging. 2008;19:43–57.

    Article  PubMed  Google Scholar 

  11. Ordovas KG, Reddy GP, Higgins CB. MRI in nonischemic acquired heart disease. J Magn Reson Imaging. 2008;27:1195–213.

    Article  PubMed  Google Scholar 

  12. Cowie MR, Wood DA, Coats AJ, Thompson SG, Poole-Wilson PA, Suresh V, et al. Incidence and aetiology of heart failure; a population-based study. Eur Heart J. 1999;20:421–8.

    Article  CAS  PubMed  Google Scholar 

  13. Mahrholdt H, Wagner A, Judd RM, Sechtem U, Kim RJ, et al. Delayed enhancement cardiovascular magnetic resonance assessment of non-ischaemic cardiomyopathies. Eur Heart J. 2005;26:1461–74.

    Article  PubMed  Google Scholar 

  14. Iles L, Pfluger H, Lefkovits L, Butler MJ, Kistler PM, Kaye DM, et al. Myocardial fibrosis predicts appropriate device therapy in patients with implantable cardioverterdefibrillators for primary prevention of sudden cardiac death. J Am Coll Cardiol. 2011;57:821–8.

    Article  PubMed  Google Scholar 

  15. Pedretti S, Vargiu S, Baroni M, Dellegrottaglie S, Lanzarin B, Roghi A, et al. Complexity of scar and ventricular arrhythmias in dilated cardiomyopathy of any etiology: long-term data from the SCARFEAR (Cardiovascular Magnetic Resonance Predictors of Appropriate Implantable Cardioverter-Defibrillator Therapy Delivery) Registry. Clin Cardiol. 2018;41(4):494–501.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kober L, Thune JJ, Nielsen JC, et al. Defibrillator implantation in patients with nonischemic systolic heart failure. N Engl J Med. 2016;375:1221–30.

    Article  PubMed  Google Scholar 

  17. Barison A, Aimo A, Castiglione V, Arzilli C, et al. Late gadolinium enhancement predicts appropriate defibrillator interventions in noni- schaemic dilated cardiomyopathy. European Heart Journal - Cardiovascular Imaging. 2019;20(Issue Supplement 2):jez102.002.

    Article  Google Scholar 

  18. Leong DP, Chakrabarty A, Shipp N, Molaee P, Madsen PL, Joerg L, et al. Effects of myocardial fibrosis and ventricular dyssynchrony on response to therapy in newpresentation idiopathic dilated cardiomyopathy: insights from cardiovascular magnetic resonance and echocardiography. Eur Heart J. 2012;33:640–8.

    Article  CAS  PubMed  Google Scholar 

  19. Pi SH, Kim SM, Choi JO, Kim EK, Chang SA, Choe YH, et al. Prognostic value of myocardial strain and late gadolinium enhancement on cardiovascular magnetic resonance imaging in patients with idiopathic dilated cardiomyopathy with moderate to severely reduced ejection fraction. J Cardiovasc Magn Reson. 2018;20(1):36.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Klem I, Weinsaft JW, Bahnson TD, Hegland D, Kim HW, Hayes B, et al. Assessment of myocardial scarring improves risk stratification in patients evaluated for cardiac defibrillator implantation. J Am Coll Cardiol. 2012;60:408–20.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Barison A, Aimo A, Castiglione V, Arzilli C, et al. Late gadolinium enhancement predicts appropriate defibrillator interventions in noni- ischemic dilated cardiomyopathy. European Heart Journal - Cardiovascular Imaging. 2019;20(Issue Supplement 2):jez102.002.

    Article  Google Scholar 

  22. •Pontone G, Guaricci AI, Andreini D, et al. Prognostic benefit of cardiac magnetic resonance over transthoracic echocardiography for the assessment of ischemic and nonischemic dilated cardiomyopathy patients referred for the evaluation of primary prevention implantable cardioverter-defibrillator therapy. Circ Cardiovasc Imaging. 2016;9(10) Reader can find these references helpful to understand the role of CMR in different disease process with different and newer CMR applications.

  23. Leyva F, Foley PW, Chalil S, et al. Cardiac resynchronization therapy guided by late gadolinium-enhancement cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2011;13:29.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sandeep P, Andrew J, Taylor B, et al. Catheter ablation versus medical rate control in atrial fibrillation and systolic dysfunction. The CAMERA-MRI Study. JACC. 2017;70(16):1950–61.

    Google Scholar 

  25. Siontis KC, Kim HM, Sharaf Dabbagh G, Latchamsetty R, Stojanovska J, Jongnarangsin K, et al. Association of preprocedural cardiac magnetic resonance imaging with outcomes of ventricular tachycardia ablation in patients with idiopathic dilated cardiomyopathy. Heart Rhythm. 2017 Oct;14(10):1487–93.

  26. Youn JC, Yj H, Lee HJ, Lee HJ, et al. Contrast-enhanced T1 mapping based extracellular volume fraction independently predicts clinical outcome in patients with non-ischemic dilated cardiomyopathy: a prospective a cohort study. Eur Radiol. 2017;27(9):3924–33.

    Article  PubMed  Google Scholar 

  27. Zhuang B, Sirajuddin A, Wang S, et al. Prognostic value of T1 mapping and extracellular volume fraction in cardiovascular disease: a systematic review and meta-analysis. Heart rEV. 2018;23(5):723–31.

    Google Scholar 

  28. Chen R, Wang J, Du Z, Juan YH, Chan CW, Fei H, et al. The comparison of short-term prognostic value of T1 mapping with feature tracking by cardiovascular magnetic resonance in patients with severe dilated cardiomyopathy. Int J Cardiovasc Imaging. 2019;35(1):171–8.

    Article  PubMed  Google Scholar 

  29. Inui K, Asai K, Tachi M, et al. Extracellular volume fraction assessed using cardiovascular magnetic resonance can predict improvement in left ventricular ejection fraction in patients with dilated cardiomyopathy. Heart Vessels. 2018;33(10):1195–203.

    Article  PubMed  Google Scholar 

  30. Spieker M, Katsianos E, Gastl M, Behm P, et al. T2 mapping cardiovascular magnetic resonance identifies the presence of myocardial inflammation in patients with dilated cardiomyopathy as compared to endomyocardial biopsy. Eur Heart J Cardiovascular Imaging. 2018;195(5):574–82.

    Article  Google Scholar 

  31. Nakamori S, Bui AH, Jang J, el-Rewaidy HA, Kato S, Ngo LH, et al. Increased myocardial native Ti relaxation time in patients with nonischemic dilated cardiomyopathy with complex ventricular arrythmias. J Magn Imaging. 2018;47(3):779–86.

    Article  Google Scholar 

  32. Kato S, Nakamori S, Roujol S, Delling FN, Akhtari S, Jang J, et al. Relationship between native papillary muscle T1 time and severity of functional mitral regurgitation in patients with non-ischemic dilated cardiomyopathy. J Cardiovasc Magn Reson. 2016;18(1):79.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Buss SJ, Breuninger K, Lehrke S, Voss A, Galuschky C, Lossnitzer D, et al. Assessment of myocardial deformation with cardiac magnetic resonance strain imaging improves risk stratification in patients with dilated cardiomyopathy. Eur Heart J Cardiovasc Imaging. 2015;16:307–15.

    Article  PubMed  Google Scholar 

  34. Pan J, Wan Q, Li J, Wu H, Gao C, Tao Y, et al. Strain values of the left ventricular segments reduces non-homogeneosly in dilated cardiomyopathy with moderately and severely deteriorated heart function assessed by MRI tissue tracking imaging. Int Heart J. 2018;59:1312–9.

    Article  PubMed  Google Scholar 

  35. Semsarian C, Ingles J, Maron MS, Maron BJ. New perspectives on the prevalence of hypertrophic cardiomyopathy. J Am Coll Cardiol. 2015;65:1249–54.

    Article  PubMed  Google Scholar 

  36. Lima JA, Desai MY. Cardiovascular magnetic resonance imaging: current and emerging applications. J Am Coll Cardiol. 2004;44:1164–71.

    Article  PubMed  Google Scholar 

  37. Olivotto I, Maron MS, Autore C, Lesser JR, Rega L, Casolo G, et al. Assessment and significance of left ventricular mass by cardiovascular magnetic resonance in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2008;52:559–66.

    Article  PubMed  Google Scholar 

  38. Rickers C, Wilke NM, Jerosch-Herold M, Casey SA, Panse P, Panse N, et al. Utility of cardiac magnetic resonance imaging in the diagnosis of hypertrophic cardiomyopathy. Circulation. 2005;112:855–61.

    Article  PubMed  Google Scholar 

  39. Kwon DH, Setser RM, Popovic ZB, et al. Association of myocardial fibrosis, electrocardiography and ventricular tachyarrhythmia in hypertrophic cardiomyopathy: a delayed contrast enhanced MRI study. Int J Cardiovasc Imaging. 2008;24:617–25.

    Article  PubMed  Google Scholar 

  40. Adabag AS, Maron BJ, Appelbaum E, Harrigan CJ, Buros JL, Gibson CM, et al. Occurrence and frequency of arrhythmias in hypertrophic cardiomyopathy in relation to delayed enhancement on cardiovascular magnetic resonance. J Am Coll Cardiol. 2008;51:1369–74.

    Article  PubMed  Google Scholar 

  41. Rubinshtein R, Glockner JF, Ommen SR, Araoz PA, Ackerman MJ, Sorajja P, et al. Characteristics and clinical significance of late gadolinium enhancement by contrast-enhanced magnetic resonance imaging in patients with hypertrophic cardiomyopathy. Circ Heart Fail. 2010;3:51–8.

    Article  PubMed  Google Scholar 

  42. O’Hanlon R, Grasso A, Roughton M, et al. Prognostic significance of myocardial fibrosis in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2010;56:867–74.

    Article  PubMed  Google Scholar 

  43. Bruder O, Wagner A, Jensen CJ, Schneider S, Ong P, Kispert EM, et al. Myocardial scar visualized by cardiovascular magnetic resonance imaging predicts major adverse events in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 2010;56:875–87.

    Article  PubMed  Google Scholar 

  44. Avegliano G, Politi MT, Costabel JP, Kuschnir P, Trivi M, Ronderos R. Differences in the extent of fibrosis in obstructive and nonobstructive hypertrophic cardiomyopathy. J Cardiovasc Med (Hagerstown). 2019 Jun;20(6):389–96.

  45. Raman B, Ariga R, Spartera M, Sivalokanathan S, Chan K, Dass S, et al. Progression of myocardial fibrosis in hypertrophic cardiomyopathy: mechanisms and clinical implications. Eur Heart J Cardiovasc Imaging. 2019;20(2):157–67.

    Article  PubMed  Google Scholar 

  46. Hinojar R, Fernández-Golfín C, González-Gómez A, Rincón LM, Plaza-Martin M, Casas E, et al. Prognostic implications of global myocardial mechanics in hypertrophic cardiomyopathy by cardiovascular magnetic resonance feature tracking. Relations to left ventricular hypertrophy and fibrosis. Int J Cardiol. 2017;249:467–72.

    Article  PubMed  Google Scholar 

  47. Sanaani A, Fuisz A. Cardiac magnetic resonance for diagnosis and risk stratification. Cardiol Clin. 2019;37(1):27–33.

    Article  PubMed  Google Scholar 

  48. Ismail TF, Jabbour A, Gulati A, Mallorie A, Raza S, Cowling TE, et al. Role of late gadolinium enhancement cardiovascular magnetic resonance in the risk stratification of hypertrophic cardiomyopathy. Heart. 2014;100:1851–8.

    Article  PubMed  Google Scholar 

  49. Weng Z, Yao J, Chan RH, He J, Yang X, Zhou Y, et al. Prognostic value of LGE-CMR in HCM: a meta-analysis. J Am Coll Cardiol Img. 2016;9:1392–402.

    Article  Google Scholar 

  50. Patel AR, Kramer CM. Role of the cardiac magnetic resonance in the diagnosis and prognosis of nonischemic cardiomyopathy. J Am Coll Cardiol: Imaging. 2017;10:1180–93.

    Article  Google Scholar 

  51. Arbustini E, Di Toro A, Giuliani L, et al. Cardiac phenotypes in hereditary muscle disorders. J Am Coll. 2018;72:2485–506.

    Article  Google Scholar 

  52. Amano Y, Suzuki Y, Yanagisawa F, Omori Y, Matsumoto N. Relationship between extension or texture features of late gadolinium enhancement and ventricular tachyarrhythmias in hypertrophic cardiomyopathy. Biomed Res Int. 2018;2018:4092469.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Cochet H, Morlon L, Vergé MP, Salel M, Camaioni C, Reynaud A, et al. Predictors of future onset of atrial fibrillation in hypertrophic cardiomyopathy. Arch Cardiovasc Dis. 2018;111(10):591–600.

    Article  PubMed  Google Scholar 

  54. Cheng S, Fang M, Cui C, Chen X, Yin G, Prasad SK, et al. LGE-CMR-derived texture features reflect poor prognosis in hypertrophic cardiomyopathy patients with systolic dysfunction: preliminary results. Eur Radiol. 2018;28(11):4615–24.

    Article  PubMed  Google Scholar 

  55. Swoboda PP, McDiarmid AK, Erhayiem B, Law GR, et al. Effect of cellular and extracellular pathology assessed by T1 mapping on regional contractile function in hypertrophic cardiomyopathy. J Cardiovasc Magn Reson. 2017;19(1):16.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Hinojar R, Varma N, Child N, et al. T1 Mapping in discrimination of hypertrophic phenotypes: hypertensive heart disease and hypertrophic cardiomyopathy: findings from the International T1 Multicenter Cardiovascular Magnetic Resonance Study. Circ Cardiovasc Imaging. 2015;8:e003285.

    Article  PubMed  Google Scholar 

  57. McLellan A, Ellims AH, Prabhu S, et al. Diffuse ventricular fibrosis on cardiac magnetic resonance imaging associates with ventricular tachycardia in patients with hypertrophic cardiomyopathy. J Cardiovasc Electrophysiol. 2016;27:571–80.

    Article  PubMed  Google Scholar 

  58. Avanesov M, Münch J, Weinrich J, Well L, Säring D, Stehning C, et al. Prediction of the estimated 5-year risk of sudden cardiac death and syncope or non-sustained ventricular tachycardia in patients with hypertrophic cardiomyopathy using late gadolinium enhancement and extracellular volume CMR. Eur Radiol. 2017;27(12):5136–45.

    Article  PubMed  Google Scholar 

  59. Gommans DHF, Cramer GE, Bakker J, Dieker HJ, Michels M, Fouraux MA, et al. High T2-weighted signal intensity for risk prediction of sudden cardiac death in hypertrophic cardiomyopathy. Int J Cardiovasc Imaging. 2018;34(1):113–20.

    Article  PubMed  Google Scholar 

  60. Authors/Task Force Members, Elliott PM, Anastasakis A, Borger MA, Borggrefe M, Cecchi F, et al. Authors/Task Force Members. 2014 ESC guidelines on diagnosis and management of hypertrophic cardiomyopathy: the task force for the diagnosis and management of hypertrophic cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J. 2014;35:2733–79.

    Article  CAS  Google Scholar 

  61. Nistri S, Olivotto I, Betocchi S, Losi MA, Valsecchi G, Pinamonti B, et al. Prognostic significance of left atrial size in patients with hypertrophic cardiomy- opathy (from the Italian Registry for hypertrophic cardiomyopathy). Am J Cardiol. 2006;98:960–5.

    Article  PubMed  Google Scholar 

  62. Woo A, Williams WG, Choi R, Wigle ED, Rozenblyum E, Fedwick K, et al. Clinical and echocardiographic determinants of long-term survival after surgical myectomy in obstructive hypertrophic cardiomyopathy. Circulation. 2005;111:2033–41.

    Article  PubMed  Google Scholar 

  63. Williams LK, et al. Effect of left ventricular outflow tract obstruction on left atrial mechanics in hypertrophic cardiomyopathy. Biomed Res Int. 2015;2015:481245.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Hage FG, Karakus G, Luke WD Jr, et al. Effect of alcohol-induced septal ablation on left atrial volume and ejection fraction assessed by real time three-dimensional transthoracic echocardiography in patients with hypertrophic cardiomyopathy. Echocardiography. 2008;25(7):784–9.

    Article  PubMed  Google Scholar 

  65. Girasis C, Vassilikos V, Efthimiadis GK, Papadopoulou SL, Dakos G, Dalamaga EG, et al. Patients with hypertrophic cardiomyopathy at risk for paroxysmal atrial fibrillation: advanced echocardiographic evaluation of the left atrium combined with non-invasive P-wave analysis. Eur Heart J Cardiovasc Imaging. 2013;14(5):425–34.

    Article  PubMed  Google Scholar 

  66. Debonnaire P, Joyce E, Hiemstra Y, Mertens BJ, Atsma DE, Schalij MJ, et al. Left atrial size and function in hypertrophic cardiomyopathy patients and risk of new-onset atrial fibrillation. Circ Arrhythm Electrophysiol. 2017.

  67. Leng S, Tan RS, Zhao X, Allen JC, Koh AS, Zhong L. Validation of a rapid semi-automated method to assess left atrial longitudinal phasic strains on cine cardiovascular magnetic resonance imaging. J Cardiovasc Magn Reson. 2018;20(1):71.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Hinojar R, Zamorano JL, Fernández-Méndez M, Esteban A, Plaza-Martin M, González-Gómez A, et al. Prognostic value of left atrial function by cardiovascular magnetic resonance feature tracking in hypertrophic cardiomyopathy. Int J Cardiovasc Imaging. 2019;35:1055–65.

    Article  PubMed  Google Scholar 

  69. Farhad H, Seidelmann SB, Vigneault D, Abbasi SA, Yang E, Day SM, et al. Left atrial structure and function in hypertrophic cardiomyopathy sarcomere mutation carriers with and without left ventricular hypertrophy. J Cardiovasc Magn Reson. 2017 Dec 28;19(1):107.

  70. Jenni R, Oechslin EN, van der Loo B. Isolated ventricular non-compaction of the myocardium in adults. Heart. 2007;93:11–5.

    Article  CAS  PubMed  Google Scholar 

  71. Samsa LA, Yang B, Liu J. Embryonic cardiac chamber maturation: trabeculation, conduction and cardiomyocyte proliferation. Am J Med Genet C Semin Med Genet. 2013;163c:157–68.

    Article  PubMed  Google Scholar 

  72. Gati S, Chandra N, Bennett RL, Reed M, Kervio G, Panoulas VF, et al. Increased left ventricular trabeculation in highly trained athletes: do we need more stringent criteria for the diagnosis of left ventricular non-compaction in athletes? Heart. 2013;99:401–8.

    Article  CAS  PubMed  Google Scholar 

  73. Kawel N, Nacif M, Arai AE, Gomes AS, Hundley WG, Johnson WC, et al. Trabeculated (noncompacted) and compact myocardium in adults: the multi-ethnic study of atherosclerosis. Circ Cardiovasc Imaging. 2012;5:357–66.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Petersen SE, Selvanayagam JB, Wiesmann F, Robson MD, Francis JM, Anderson RH, et al. Left ventricular non-compaction: insights from cardiovascular magnetic resonance imaging. J Am Coll Cardiol. 2005;46:101–5.

    Article  PubMed  Google Scholar 

  75. Jacquier A, Thuny F, Jop B, Giorgi R, Cohen F, Gaubert JY, et al. Measurement of trabeculated left ventricular mass using cardiac magnetic resonance imaging in the diagnosis of left ventricular non-compaction. Eur Heart J. 2010;31:1098–104.

    Article  PubMed  Google Scholar 

  76. Andre F, Burger A, et al. References values for the left and right ventricular trabeculation and non-compacted myocardium. Int J Cardiol. 2015;185:240–7.

    Article  PubMed  Google Scholar 

  77. Captur G, Muthurangu V, Cook C, Flett AS, Wilson R, Barison A, et al. Quantification of left ventricular trabeculae using fractal analysis. J Cardiovasc Magn Reson. 2013;15:36.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Dellegrottaglie S, Pedrotti P, Roghi A, Pedretti S, Chiariello M, Perrone-Filardi P. Regional and global ventricular systolic function in isolated ventricular non-compaction: pathophysiological insights from magnetic resonance imaging. Int J Cardiol. 2012;158:394–9.

    Article  PubMed  Google Scholar 

  79. Nucifora G, Aquaro GD, Pingitore A, Masci PG, Lombardi M. Myocardial fibrosis in isolated left ventricular non-compaction and its relation to disease severity. Eur J Heart Fail. 2011;13:170–6.

    Article  PubMed  Google Scholar 

  80. Boban M, Pesa V, Gabric ID, Manola S, Persic V, Antic-Kauzlaric H, et al. Auxiliary diagnostic potential of ventricle geometry and late gadolinium enhancement in left ventricular non-compaction; non-randomized case control study. BMC Cardiovasc Disord. 2017 Dec 6;17(1):286.

  81. Andreini D, Pontone G, Bogaert J, Roghi A, Barison A, Schwitter J, et al. Long-term prognostic value of cardiac magnetic resonance in left ventricle noncompaction: a prospective multicenter study. J Am Coll Cardiol. 2016;68:2166–8.

    Article  PubMed  Google Scholar 

  82. Mathis S, Tazir M, Magy L, Duval F, le Masson G, Duchesne M, et al. History and current difficulties in classifying inherited myopathies and muscular dystrophies. J Neurol Sci. 2018;384:50–4.

    Article  PubMed  Google Scholar 

  83. Malfatti E, Romero NB. Diseases of the skeletal muscle. Handb Clin Neurol. 2017:429–51.

  84. Ashford MW Jr, Liu W, Lin SJ, Abraszewski P, Caruthers SD, Connolly AM, et al. Occult cardiac contractile dysfunction in dystrophin deficient children revealed by cardiac magnetic resonance strain imaging. Circulation. 2005;112:2462–7.

    Article  PubMed  Google Scholar 

  85. Becker S, Florian A, Patrascu A, Rösch S, Waltenberger J, Sechtem U, et al. Identification of cardiomyopathy associated circulating miRNA biomarkers in patients with muscular dystrophy using a complementary cardiovascular magnetic resonance and plasma profiling approach. J Cardiovasc Magn Reson. 2016;18:25.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Tandon A, Villa CR, Hor KN, et al. Myocardial fibrosis burden predicts left ventricular ejection fraction and is associated with age and steroid treatment duration in Duchenne muscular dystrophy. J Am Heart Assoc. 2015;4:e001338.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Hor KN, Taylor MD, Al-Khalidi HR, et al. Prevalence and distribution of late gadolinium enhancement in a large population of patients with Duchenne muscular dystrophy: effect of age and left ventricular systolic function. J Cardiovasc Magn Reson. 2013;15:107.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Panovský R, Pešl M, Holeček T, Máchal J, Feitová V, Mrázová L, et al. Cardiac profile of the Czech population of Duchenne muscular dystrophy patients: a cardiovascular magnetic resonance study with T1 mapping. Orphanet J Rare Dis. 2019;14(1):10.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Starc JJ, Moore RA, Rattan MS, Villa CR, Gao Z, Mazur W, et al. Elevated myocardial extracellular volume fraction in Duchenne muscular dystrophy. Pediatr Cardiol. 2017;38(7):1485–92.

    Article  PubMed  Google Scholar 

  90. Soslow JH, Damon SM, Crum K, Lawson MA, et al. Increased myocardial native T1 and extracellular volume in patients with Duchenne muscular dystrophy. J Cardiovasc Magn Reson. 2016;18:5.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Olivieri LJ, Kellman P, McCarter RJ, Cross RR, Hansen MS, Spurney CF. Native T1 values identify myocardial changes and stratify disease severity in patients with Duchenne muscular dystrophy. J Cardiovasc Magn Reson. 2016;18(1):72.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Siegel B, Olivieri L, Gordish-Dressman H, Spurney CF, et al. Myocardial strain using cardiac MR feature tracking and speckle tracking echocardiography in Duchenne muscular dystrophy patients. Pediatr Cardiol. 2018;39(3):478–83.

    Article  PubMed  Google Scholar 

  93. Marcus FI, McKenna WJ, Sherrill D, et al. Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the task force criteria. Eur Heart J. 2010;31:806–14.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Pieroni M, Dello Russo A, Marzo F, et al. High prevalence of myocarditis mimicking arrhythmogenic right ventricular cardiomyopathy differential diagnosis by electroanatomic mapping-guided endomyocardial biopsy. J Am Coll Cardiol. 2009;53:681–9.

    Article  PubMed  Google Scholar 

  95. Fontaine GH, Andreoletti L, Redheuil A. Genetics of myocarditis in cardiomyopathies. Heart Rhythm. 2015;12:774–5.

    Article  PubMed  Google Scholar 

  96. Lopez-Ayala JM, Pastor-Quirante F, Gonzalez-Carrillo J, et al. Genetics of myocarditis in arrhythmogenic right ventricular dysplasia. Heart Rhythm. 2015;12:766–73.

    Article  PubMed  Google Scholar 

  97. Ott P, Marcus FI, Sobonya RE, Morady F, Knight BP, Fuenzalida CE. Cardiac sarcoidosis masquerading as right ventricular dysplasia. Pacing Clin Electrophysiol. 2003;26:1498–503.

    Article  PubMed  Google Scholar 

  98. Kumar S, Baldinger SH, Kapur S, Romero J, Mehta NK, Mahida S, et al. Right ventricular scar-related ventricular tachycardia in nonischemic cardiomyopathy: electrophysiological characteristics, mapping, and ablation of underlying heart disease. J Cardiovasc Electrophysiol. 2018;29:79–89.

    Article  PubMed  Google Scholar 

  99. Deac M, Alpendurada F, Fanaie F, Vimal R, Carpenter JP, Dawson A, et al. Prognostic value of cardiovascular magnetic resonance in patients with suspected arrhythmogenic right ventricular cardiomyopathy. Int J Cardiol. 2013;168:3514–21.

    Article  PubMed  Google Scholar 

  100. Kellman P, Hernando D, Shah S, Zuehlsdorff S, Jerecic R, Mancini C, et al. Multiecho Dixon fat and water separation method for detecting fibro-fatty infiltration in the myocardium. Magn Reson Med. 2009;61:215–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Tandri H, Saranathan M, Rodriguez ER, Martinez C, Bomma C, Nasir K, et al. Noninvasive detection of myocardial fibrosis in arrhythmogenic right ventricular cardiomyopathy using delayed-enhancement magnetic resonance imaging. J Am Coll Cardiol. 2005;45:98–103.

    Article  PubMed  Google Scholar 

  102. Xie S, Desjardins B, Kubala M, Liang J, Yang J, van der Geest R, et al. Association of regional epicardial right ventricular electrogram voltage amplitude and late gadolinium enhancement distribution on cardiac magnetic resonance in patients with arrhythmogenic right ventricular cardiomyopathy: implications for ventricular tachycardia ablation. Heart Rhythm. 2018;15(7):987–93.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Åström Aneq M, Maret E, Brudin L, Svensson A, Engvall J. Right ventricular systolic function and mechanical dispersion identify patients with arrhythmogenic right ventricular cardiomyopathy. Clin Physiol Funct Imaging. 2018;38(5):779–87.

    Article  PubMed  Google Scholar 

  104. Prati G, Vitrella G, Allocca G, et al. Right ventricular strain and dyssynchrony assessment in arrhythmogenic right ventricular cardiomyopathy: cardiac magnetic resonance feature-tracking study. Circ Cardiovasc Imaging. 2015;8:e003647 discussion e003647.

  105. Bourfiss M, Vigneault DM, Aliyari Ghasebeh M, Murray B, James CA, Tichnell C, et al. Feature tracking CMR reveals abnormal strain in preclinical arrhythmogenic right ventricular dysplasia/ cardiomyopathy: a multisoftware feasibility and clinical implementation study. J Cardiovasc Magn Reson. 2017;19(1):66.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Lamy J, Soulat G, Evin M, Huber A, de Cesare A, Giron A, et al. Scan-rescan reproducibility of ventricular and atrial MRI feature tracking strain. Comput Biol Med. 2018;92:197–203.

    Article  PubMed  Google Scholar 

  107. Heermann P, Hedderich DM, Paul M, Schülke C, Kroeger JR, Baeßler B, et al. Biventricular myocardial strain analysis in patients with arrhythmogenic right ventricular cardiomyopathy (ARVC) using cardiovascular magneticresonance feature tracking. J Cardiovasc Magn Reson. 2014;16:75.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Czimbalmos C, Csecs I, Dohy Z, Toth A, Suhai FI, Müssigbrodt A, et al. Cardiac magnetic resonance based deformation imaging: role of feature tracking in athletes with suspected arrhythmogenic right ventricular cardiomyopathy. Int J Cardiovasc Imaging. 2019;35(3):529–38.

    Article  PubMed  Google Scholar 

  109. McLeod K, Wall S, Leren IS, Saberniak J, Haugaa KH. Ventricular structure in ARVC: going beyond volumes as a measure of risk. J Cardiovasc Magn Reson. 2016;18(1):73.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Te Riele AS, Tandri H, Bluemke DA. Arrhythmogenic right ventricular cardiomyopathy (ARVC): cardiovascular magnetic resonance update. J Cardiovasc Magn Reson. 2014;16:50.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Abuzaid MD, FACP, FASE, FACC.

Ethics declarations

Conflict of Interest

All authors has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Topical Collection on Imaging

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodriguez-Ortiz, J., Abuzaid, A., Brian, AE. et al. Cardiovascular Magnetic Resonance Imaging Tissue Characterization in Non-ischemic Cardiomyopathies. Curr Treat Options Cardio Med 22, 16 (2020). https://doi.org/10.1007/s11936-020-00813-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11936-020-00813-1

Keywords

Navigation