Skip to main content
Log in

The comparison of short-term prognostic value of T1 mapping with feature tracking by cardiovascular magnetic resonance in patients with severe dilated cardiomyopathy

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

To evaluate and compare the prognostic value of T1 mapping with feature tracking cardiovascular magnetic resonance (FT-CMR) imaging in patients with severe dilated cardiomyopathy (DCM) during short-term follow-up. A total of 46 patients with severe DCM (LVEF < 35%) underwent 3.0-T CMR with T1 mapping and FT-CMR analysis. The study end-point was defined as a combination of cardiac death, heart transplantation, and hospitalization due to cardiovascular events. The significance of the risk factors was mainly evaluated by univariate and multivariate Cox model analyses. During the median follow-up of 13 months (interquartile range 7–17 months), two patients died of heart failure, one received a heart transplantation, and six were hospitalized for heart failure. In the univariate analysis, extracellular volume fraction (ECV) showed significant predictive association with cardiovascular events (hazard ratio [HR] 1.35; 95% confidence interval [CI] 1.13–1.62; P = 0.001). No strain parameters in FT-CMR differed significantly between patients with or without events (all P > 0.05). In the multivariate analyses, ECV was the sole independent predictor of cardiovascular events (HR, 1.48; 95% CI 1.13–1.94; P = 0.005). The area under the curve of the time-dependent receiver operating characteristic in leave-one-out cross-validation (all > 0.70) further confirmed the predictive significance of ECV. In patients with severe DCM, ECV was not only a strong independent predictor of adverse cardiovascular events but also provided prognostic value prior to strain parameters of the FT-CMR in the short term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

DCM:

Dilated cardiomyopathy

CMR:

Cardiovascular magnetic resonance

LVEF:

Left ventricular ejection fraction

LVEDVI:

Left ventricular end-diastolic volume index

LGE:

Late gadolinium enhancement

ECV:

Extracellular volume fraction

FT-CMR:

Feature tracking cardiovascular magnetic resonance

STE:

Speckle tracking echocardiography

GLS:

Global longitudinal strain

GCS:

Global circumferential strain

IQR:

Interquartile range

ROI:

Region of interest

ROC:

Receiver operating characteristic

AUC:

Area under the curve

References

  1. Jefferies JL, Towbin JA (2010) Dilated cardiomyopathy. Lancet 375:752–762. https://doi.org/10.1016/s0140-6736(09)62023-7

    Article  PubMed  Google Scholar 

  2. Felker GM, Thompson RE, Hare JM et al (2000) Underlying causes and long-term survival in patients with initially unexplained cardiomyopathy. N Engl J Med 342(15):1077–1084. https://doi.org/10.1056/NEJM200004133421502

    Article  CAS  PubMed  Google Scholar 

  3. McMurray JJ, Adamopoulos S, Anker SD, Auricchio A, Bohm M, Dickstein K et al (2012) ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur Heart J 33:1787–1847. https://doi.org/10.1093/eurjhf/hfs105

    Article  CAS  PubMed  Google Scholar 

  4. Dec GW, Fuster V (1994) Idiopathic dilated cardiomyopathy. N Engl J Med 331:1564–1575. https://doi.org/10.1056/NEJM199412083312307

    Article  CAS  PubMed  Google Scholar 

  5. Gulati A, Jabbour A, Ismail TF, Guha K, Khwaja J, Raza S et al (2013) Association of fibrosis with mortality and sudden cardiac death in patients with nonischemic dilated cardiomyopathy. JAMA 309:896–908. https://doi.org/10.1001/jama.2013.1363

    Article  CAS  PubMed  Google Scholar 

  6. Halliday BP, Cleland JGF, Goldberger JJ, Prasad SK (2017) Personalizing risk stratification for sudden death in dilated cardiomyopathy: the past, present, and future. Circulation 136:215–231. https://doi.org/10.1161/CIRCULATIONAHA.116.027134

    Article  PubMed  PubMed Central  Google Scholar 

  7. Taylor RJ, Moody WE, Umar F, Edwards NC, Taylor TJ, Stegemann B et al (2015) Myocardial strain measurement with feature-tracking cardiovascular magnetic resonance: normal values. Eur Heart J 16:871–881. https://doi.org/10.1093/ehjci/jev006

    Article  Google Scholar 

  8. Nagueh SF, Smiseth OA, Appleton CP, Byrd BF 3rd, Dokainish H, Edvardsen T et al (2016) Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of cardiovascular imaging. Eur Heart J 17:1321–1360. https://doi.org/10.1093/ehjci/jew082

    Article  Google Scholar 

  9. Buss SJ, Breuninger K, Lehrke S, Voss A, Galuschky C, Lossnitzer D et al (2015) Assessment of myocardial deformation with cardiac magnetic resonance strain imaging improves risk stratification in patients with dilated cardiomyopathy. Eur Heart J 16:307–315. https://doi.org/10.1093/ehjci/jeu181

    Article  Google Scholar 

  10. Park SM, Kim YH, Ahn CM, Hong SJ, Lim DS, Shim WJ (2011) Relationship between ultrasonic tissue characterization and myocardial deformation for prediction of left ventricular reverse remodelling in non-ischaemic dilated cardiomyopathy. Eur J Echocardiogr 12:887–894. https://doi.org/10.1093/ejechocard/jer177

    Article  PubMed  Google Scholar 

  11. Moon JCMD, Kellman P, Piechnik SK, Robson MD, Ugander M, Gatehouse PD, Arai AE, Friedrich MG, Neubauer S, Schulz-Menger J, Schelbert EB (2013) Myocardial T1 mapping and extracellular volume quantification: a society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. J Cardiovasc Magn Reson 15:92. https://doi.org/10.1186/1532-429X-15-92

    Article  PubMed  PubMed Central  Google Scholar 

  12. aus dem Siepen F, Buss SJ, Messroghli D, Andre F, Lossnitzer D, Seitz S, Keller M et al (2014) T1 mapping in dilated cardiomyopathy with cardiac magnetic resonance: quantification of diffuse myocardial fibrosis and comparison with endomyocardial biopsy. Eur Heart J 16:210–216. https://doi.org/10.1093/ehjci/jeu183

    Article  Google Scholar 

  13. Puntmann VO, Carr-White G, Jabbour A, Yu CY, Gebker R, Kelle S et al (2016) T1-mapping and outcome in nonischemic cardiomyopathy: all-cause mortality and heart failure. JACC Cardiovasc Imaging 9:40–50. https://doi.org/10.1016/j.jcmg.2015.12.001

    Article  PubMed  Google Scholar 

  14. Maceira A, Prasad S, Khan M, Pennell D (2006) Normalized left ventricular systolic and diastolic function by steady state free precession cardiovascular magnetic resonance. J Cardiovasc Magn Reson 8:417–426. https://doi.org/10.1080/10976640600572889

    Article  CAS  PubMed  Google Scholar 

  15. Heagerty PJ, Lumley T, Pepe MS (2000) Time-dependent ROC curves for censored survival data and a diagnostic marker. Biometrics 56:337–344. https://doi.org/10.1111/j.0006-341X.2000.00337.x

    Article  CAS  PubMed  Google Scholar 

  16. Wong TC, Piehler K, Meier CG, Testa SM, Klock AM, Aneizi AA et al (2012) Association between extracellular matrix expansion quantified by cardiovascular magnetic resonance and short-term mortality. Circulation 126:1206–1216. https://doi.org/10.1161/circulationaha.111.089409

    Article  PubMed  PubMed Central  Google Scholar 

  17. Barison A, Grigoratos C, Todiere G, Aquaro GD (2015) Myocardial interstitial remodelling in non-ischaemic dilated cardiomyopathy: insights from cardiovascular magnetic resonance. Heart Fail Rev 20:731–749. https://doi.org/10.1007/s10741-015-9509-4

    Article  CAS  PubMed  Google Scholar 

  18. Miller CA, Naish JH, Bishop P, Coutts G, Clark D, Zhao S et al (2013) Comprehensive validation of cardiovascular magnetic resonance techniques for the assessment of myocardial extracellular volume. Circ Cardiovasc Imaging 6:373–383. https://doi.org/10.1161/CIRCIMAGING.112.000192

    Article  PubMed  Google Scholar 

  19. Hong YJ, Park CH, Kim YJ, Hur J, Lee H-J, Hong SR et al (2015) Extracellular volume fraction in dilated cardiomyopathy patients without obvious late gadolinium enhancement: comparison with healthy control subjects. Int J Cardiovasc Imaging 31:115–122. https://doi.org/10.1007/s10554-015-0595-0

    Article  PubMed  Google Scholar 

  20. Kawel NNM, Zavodni A, Jones J, Liu S, Sibley CT, Bluemke DA (2012) T1 mapping of the myocardium: intra-individual assessment of the effect of field strength, cardiac cycle and variation by myocardial region. J Cardiovasc Magn Reson Imaging 14:27. https://doi.org/10.1186/1532-429X-14-27

    Article  Google Scholar 

  21. Aleksova A, Sabbadini G, Merlo M, Pinamonti B, Barbati G, Zecchin M et al (2009) Natural history of dilated cardiomyopathy: from asymptomatic left ventricular dysfunction to heart failure—a subgroup analysis from the Trieste Cardiomyopathy Registry. J Cardiovasc Med 10:699–705. https://doi.org/10.2459/JCM.0b013e32832bba35

    Article  Google Scholar 

  22. Arenja NRJ, Fritz T, Andre F, Siepen F, Mueller-Hennessen MGE, Katus HA, Friedrich MG, Buss SJ (2017) Diagnostic and prognostic value of long-axis strain and myocardial contraction fraction using standard cardiovascular MR imaging in patients with nonischemic dilated cardiomyopathies. Radiology 283:681–691. https://doi.org/10.1148/radiol.2016161184

    Article  PubMed  Google Scholar 

  23. Götte MJW, Germans T, Rüssel IK, Zwanenburg JJM, Marcus JT, van Rossum AC et al (2006) Myocardial strain and torsion quantified by cardiovascular magnetic resonance tissue tagging. J Am Coll Cardiol 48:2002–2011. https://doi.org/10.1016/j.jacc.2006.07.048

    Article  PubMed  Google Scholar 

  24. Claus P, Omar AM, Pedrizzetti G, Sengupta PP, Nagel E (2015) Tissue tracking technology for assessing cardiac mechanics: principles, normal values, and clinical applications. JACC Cardiovasc Imaging 8:1444–1460. https://doi.org/10.1016/j.jcmg.2015.11.001

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The study received funding from the National Natural Science Foundation of China (No. 81771799), Guangdong Provincial Science and Technology Planning Project (No. 2014A020212676), and Science and Technology Program of Guangzhou, China (No. 201707010306).

Author information

Authors and Affiliations

Authors

Contributions

RC drafted the manuscript; JW, JX and WW acquired the data; YHJ, CWSC, HF, LL, JM, SW, CL revised the manuscript; RC, ZD, YZ and ZY provided the analysis method. HL provided the conception and design of the study.

Corresponding author

Correspondence to Hui Liu.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1845 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, R., Wang, J., Du, Z. et al. The comparison of short-term prognostic value of T1 mapping with feature tracking by cardiovascular magnetic resonance in patients with severe dilated cardiomyopathy. Int J Cardiovasc Imaging 35, 171–178 (2019). https://doi.org/10.1007/s10554-018-1444-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-018-1444-8

Keywords

Navigation