Skip to main content
Log in

CMR in Hypertrophic Cardiac Conditions—an Update

  • Cardiac Magnetic Resonance (E Nagel and V Puntmann, Section Editors)
  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Myocardial left ventricular (LV) hypertrophy (LVH) is a common phenotype associated to increased morbidity and mortality. Beyond an accurate LV mass quantification, cardiovascular magnetic resonance (CMR) can also provide tissue characterization, perfusion, and deformation assessments. Aim of the present review is to discuss recent advances in CMR imaging of LVH.

Recent Findings

T1 and T2 mapping techniques expanded the ability of CMR in phenotyping LVH, underscoring the pathogenic significance of interstitial fibrosis and edema in hypertrophic conditions. Perfusion and deformation assessments revealed dysfunctional correlates not uncommonly associated to LVH. Late gadolinium enhancement (LGE) highlighted the role of replacement fibrosis as a marker of advanced disease. Finally, the prognostic relevance of both interstitial and replacement fibrosis has been demonstrated in several LVH conditions.

Summary

CMR is an efficient tool for differential diagnosis of LVH phenotypes. Furthermore, it can often provide prognostic information, potentially guiding treatment and improving clinical management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med. 1990;322:1561–6. https://doi.org/10.1056/NEJM199005313222203.

    Article  CAS  PubMed  Google Scholar 

  2. Schulz-Menger J, Bluemke DA, Bremerich J, Flamm SD, Fogel MA, Friedrich MG, et al. Standardized image interpretation and post processing in cardiovascular magnetic resonance: Society for Cardiovascular Magnetic Resonance (SCMR) board of trustees task force on standardized post processing. J Cardiovasc Magn Reson. 2013;15:35. https://doi.org/10.1186/1532-429X-15-35.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Scatteia A, Baritussio A, Bucciarelli-Ducci C. Strain imaging using cardiac magnetic resonance. Heart Fail Rev. 2017;22:465–76. https://doi.org/10.1007/s10741-017-9621-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nagel E, Greenwood JP, McCann GP, Bettencourt N, Shah AM, Hussain ST, et al. Magnetic resonance perfusion or fractional flow reserve in coronary disease. N Engl J Med. 2019;380:2418–28. https://doi.org/10.1056/NEJMoa1716734.

    Article  PubMed  Google Scholar 

  5. Arcari L, Bucciarelli-Ducci C, Francone M, Agati L. Myocardial salvage imaging: where are we and where are we heading? A cardiac magnetic resonance perspective. Curr Cardiovasc Imaging Rep. 2018;11:8–8. https://doi.org/10.1007/s12410-018-9448-2.

    Article  Google Scholar 

  6. Puntmann VO, Peker E, Chandrashekhar Y, Nagel E. T1 mapping in characterizing myocardial disease. Circ Res. 2016;119:277–99. https://doi.org/10.1161/CIRCRESAHA.116.307974.

    Article  CAS  PubMed  Google Scholar 

  7. Kim RJ, Wu E, Rafael A, Chen EL, Parker MA, Simonetti O, et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med. 2000;343:1445–53. https://doi.org/10.1056/NEJM200011163432003.

    Article  CAS  PubMed  Google Scholar 

  8. Puntmann VO, Valbuena S, Hinojar R, Petersen SE, Greenwood JP, Kramer CM, et al. Society for Cardiovascular Magnetic Resonance (SCMR) expert consensus for CMR imaging endpoints in clinical research: part i - analytical validation and clinical qualification. J Cardiovasc Magn Reson. 2018;20:1–23. https://doi.org/10.1186/s12968-018-0484-5.

    Article  Google Scholar 

  9. ] Rodrigues JCL, Amadu AM, Dastidar AG, Szantho GV, Lyen SM, Godsave C, et al. Comprehensive characterisation of hypertensive heart disease left ventricular phenotypes. Heart. 2016;102:1671–9. https://doi.org/10.1136/heartjnl-2016-309576This study undertakes a comprehensive characterization of LVH in HTN patients, including interstitial fibrosis assessment and an interesting subgroup analysis according to specific LVH morphology.

    Article  PubMed  Google Scholar 

  10. Neisius U, Myerson L, Fahmy AS, Nakamori S, El-Rewaidy H, Joshi G, et al. Cardiovascular magnetic resonance feature tracking strain analysis for discrimination between hypertensive heart disease and hypertrophic cardiomyopathy. PLoS One. 2019;14:e0221061. https://doi.org/10.1371/journal.pone.0221061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Homsi R, Kuetting D, Sprinkart A, Steinfeld N, Meier-Schroers M, Luetkens J, et al. Interrelations of epicardial fat volume, left ventricular T1-relaxation times and myocardial strain in hypertensive patients: a cardiac magnetic resonance study. J Thorac Imaging. 2017;32:169–75. https://doi.org/10.1097/RTI.0000000000000264.

    Article  PubMed  Google Scholar 

  12. Bönner F, Janzarik N, Jacoby C, Spieker M, Schnackenburg B, Range F, et al. Myocardial T2 mapping reveals age- and sex-related differences in volunteers. J Cardiovasc Magn Reson. 2015;17:9. https://doi.org/10.1186/s12968-015-0118-0.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Treibel TA, Zemrak F, Sado DM, Banypersad SM, White SK, Maestrini V, et al. Extracellular volume quantification in isolated hypertension - changes at the detectable limits? J Cardiovasc Magn Reson. 2015;17:74. https://doi.org/10.1186/s12968-015-0176-3.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hinojar R, Varma N, Child N, Goodman B, Jabbour A, Yu C-Y, et al. T1 mapping in discrimination of hypertrophic phenotypes: hypertensive heart disease and hypertrophic cardiomyopathy CLINICAL PERSPECTIVE. Circ Cardiovasc Imaging. 2015;8:e003285. https://doi.org/10.1161/CIRCIMAGING.115.003285.

    Article  PubMed  Google Scholar 

  15. Pan JA, Michaëlsson E, Shaw PW, Kuruvilla S, Kramer CM, Gan L-M, et al. Extracellular volume by cardiac magnetic resonance is associated with biomarkers of inflammation in hypertensive heart disease. J Hypertens. 2018;37:1. https://doi.org/10.1097/HJH.0000000000001875.

    Article  CAS  Google Scholar 

  16. Coelho-Filho OR, Shah RV, Neilan TG, Mitchell R, Moreno H, Kwong R, et al. Cardiac magnetic resonance assessment of interstitial myocardial fibrosis and cardiomyocyte hypertrophy in hypertensive mice treated with spironolactone. J Am Heart Assoc. 2014;3:e000790. https://doi.org/10.1161/JAHA.114.000790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kuruvilla S, Janardhanan R, Antkowiak P, Keeley EC, Adenaw N, Brooks J, et al. Increased extracellular volume and altered mechanics are associated with LVH in hypertensive heart disease, not hypertension alone. JACC Cardiovasc Imaging. 2015;8:172–80. https://doi.org/10.1016/j.jcmg.2014.09.020.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sado DM, Flett AS, Banypersad SM, White SK, Maestrini V, Quarta G, et al. Cardiovascular magnetic resonance measurement of myocardial extracellular volume in health and disease. Heart. 2012;98:1436–41. https://doi.org/10.1136/heartjnl-2012-302346.

    Article  PubMed  Google Scholar 

  19. Schofield R, Ganeshan B, Fontana M, Nasis A, Castelletti S, Rosmini S, et al. Texture analysis of cardiovascular magnetic resonance cine images differentiates aetiologies of left ventricular hypertrophy. Clin Radiol. 2019;74:140–9. https://doi.org/10.1016/j.crad.2018.09.016.

    Article  CAS  PubMed  Google Scholar 

  20. Delacroix S, Chokka RG, Nelson AJ, Wong DT, Pederson S, Nimmo J, et al. Effects of renal sympathetic denervation on myocardial structure, function and perfusion: a serial CMR study. Atherosclerosis. 2018;272:207–15. https://doi.org/10.1016/j.atherosclerosis.2018.03.022.

    Article  CAS  PubMed  Google Scholar 

  21. Rodrigues JCL, Rohan S, Ghosh Dastidar A, Harries I, Lawton CB, Ratcliffe LE, et al. Hypertensive heart disease versus hypertrophic cardiomyopathy: multi-parametric cardiovascular magnetic resonance discriminators when end-diastolic wall thickness ≥ 15 mm. Eur Radiol. 2017;27:1125–35. https://doi.org/10.1007/s00330-016-4468-2.

    Article  PubMed  Google Scholar 

  22. Singh A, McCann GP. Cardiac magnetic resonance imaging for the assessment of aortic stenosis. Heart. 2019;105:489–97. https://doi.org/10.1136/heartjnl-2018-313003.

    Article  PubMed  Google Scholar 

  23. Podlesnikar T, Delgado V, Bax JJ. Cardiovascular magnetic resonance imaging to assess myocardial fibrosis in valvular heart disease. Int J Card Imaging. 2018;34:97–112. https://doi.org/10.1007/s10554-017-1195-y.

    Article  Google Scholar 

  24. Al MT, Uddin A, Swoboda PP, Fairbairn TA, Dobson LE, Singh A, et al. Cardiovascular magnetic resonance evaluation of symptomatic severe aortic stenosis: association of circumferential myocardial strain and mortality. J Cardiovasc Magn Reson. 2017;19:13. https://doi.org/10.1186/s12968-017-0329-7.

    Article  Google Scholar 

  25. Fehrmann A, Treutlein M, Rudolph T, Rudolph V, Weiss K, Giese D, et al. Myocardial T1 and T2 mapping in severe aortic stenosis: potential novel insights into the pathophysiology of myocardial remodelling. Eur J Radiol. 2018;107:76–83. https://doi.org/10.1016/j.ejrad.2018.08.016.

    Article  PubMed  Google Scholar 

  26. Gastl M, Behm P, Haberkorn S, Holzbach L, Veulemans V, Jacoby C, et al. Role of T2 mapping in left ventricular reverse remodeling after TAVR. Int J Cardiol. 2018;266:262–8. https://doi.org/10.1016/j.ijcard.2018.02.029.

    Article  CAS  PubMed  Google Scholar 

  27. Child N, Suna G, Dabir D, Yap M-L, Rogers T, Kathirgamanathan M, et al. Comparison of MOLLI, shMOLLLI, and SASHA in discrimination between health and disease and relationship with histologically derived collagen volume fraction. Eur Heart J Cardiovasc Imaging. 2018;19:768–76. https://doi.org/10.1093/ehjci/jex309.

    Article  PubMed  Google Scholar 

  28. Bing R, Cavalcante JL, Everett RJ, Clavel M-A, Newby DE, Dweck MR. Imaging and impact of myocardial fibrosis in aortic stenosis. JACC Cardiovasc Imaging. 2019;12:283–96. https://doi.org/10.1016/j.jcmg.2018.11.026.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chin CWL, Everett RJ, Kwiecinski J, Vesey AT, Yeung E, Esson G, et al. Myocardial fibrosis and cardiac decompensation in aortic stenosis. JACC Cardiovasc Imaging. 2017;10:1320–33. https://doi.org/10.1016/j.jcmg.2016.10.007.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lee H, Park J-B, Yoon YE, Park E-A, Kim H-K, Lee W, et al. Noncontrast myocardial T1 mapping by cardiac magnetic resonance predicts outcome in patients with aortic stenosis. JACC Cardiovasc Imaging. 2018;11:974–83. https://doi.org/10.1016/j.jcmg.2017.09.005.

    Article  PubMed  Google Scholar 

  31. ] Hwang I-C, Kim H-K, Park J-B, Park E-A, Lee W, Lee S-P, et al. Aortic valve replacement-induced changes in native T1 are related to prognosis in severe aortic stenosis: T1 mapping cardiac magnetic resonance imaging study. Eur Heart J Cardiovasc Imaging. 2019. https://doi.org/10.1093/ehjci/jez201Interesting study demonstrating the ability of native T1 to both track reverse remodeling and predict outcome after treatment of aortic stenosis, indicating that native T1 could be used as an imaging biomarker in this setting.

  32. Ahn J-H, Kim SM, Park S-J, Jeong DS, Woo M-A, Jung S-H, et al. Coronary microvascular dysfunction as a mechanism of angina in severe AS. J Am Coll Cardiol. 2016;67:1412–22. https://doi.org/10.1016/j.jacc.2016.01.013.

    Article  PubMed  Google Scholar 

  33. Singh A, Greenwood JP, Berry C, Dawson DK, Hogrefe K, Kelly DJ, et al. Comparison of exercise testing and CMR measured myocardial perfusion reserve for predicting outcome in asymptomatic aortic stenosis: the PRognostic Importance of MIcrovascular Dysfunction in Aortic Stenosis (PRIMID AS) Study. Eur Heart J. 2017;38:1222–9. https://doi.org/10.1093/eurheartj/ehx001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dweck MR, Joshi S, Murigu T, Alpendurada F, Jabbour A, Melina G, et al. Midwall fibrosis is an independent predictor of mortality in patients with aortic stenosis. J Am Coll Cardiol. 2011;58:1271–9. https://doi.org/10.1016/j.jacc.2011.03.064.

    Article  PubMed  Google Scholar 

  35. Barone-Rochette G, Piérard S, De Meester De Ravenstein C, Seldrum S, Melchior J, Maes F, et al. Prognostic significance of LGE by CMR in aortic stenosis patients undergoing valve replacement. J Am Coll Cardiol. 2014;64:144–54. https://doi.org/10.1016/j.jacc.2014.02.612.

    Article  PubMed  Google Scholar 

  36. ] Musa TA, Treibel TA, Vassiliou VS, Captur G, Singh A, Chin C, et al. Myocardial scar and mortality in severe aortic stenosis. Circulation. 2018;138:1935–47. https://doi.org/10.1161/CIRCULATIONAHA.117.032839This multicenter study, with a notable sample size, underscores the prognostic significance of LGE presence, both ischemic and mid-wall, in patients with severe aortic stenosis. This propmpts the hypothesis that, in severe aortic stenosis, replacement fibrosis could be used as a marker of advanced disease requiring intervention irrespective of symptoms.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Everett RJ, Tastet L, Clavel M-A, Chin CWL, Capoulade R, Vassiliou VS, et al. Progression of hypertrophy and myocardial fibrosis in aortic stenosis. Circ Cardiovasc Imaging. 2018;11:e007451. https://doi.org/10.1161/CIRCIMAGING.117.007451.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Papanastasiou CA, Kokkinidis DG, Kampaktsis PN, Bikakis I, Cunha DK, Oikonomou EK, et al. The prognostic role of late gadolinium enhancement in aortic stenosis. JACC Cardiovasc Imaging. 2019. https://doi.org/10.1016/j.jcmg.2019.03.029.

  39. Olivotto I, Maron MS, Autore C, Lesser JR, Rega L, Casolo G, et al. Assessment and significance of left ventricular mass by cardiovascular magnetic resonance in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2008;52:559–66. https://doi.org/10.1016/j.jacc.2008.04.047.

    Article  PubMed  Google Scholar 

  40. Musumeci MB, Russo D, Limite LR, Canepa M, Tini G, Casenghi M, et al. Long-term left ventricular remodeling of patients with hypertrophic cardiomyopathy. Am J Cardiol. 2018;122:1924–31. https://doi.org/10.1016/j.amjcard.2018.08.041.

    Article  PubMed  Google Scholar 

  41. Hinojar R, Fernández-Golfín C, González-Gómez A, Rincón LM, Plaza-Martin M, Casas E, et al. Prognostic implications of global myocardial mechanics in hypertrophic cardiomyopathy by cardiovascular magnetic resonance feature tracking. Relations to left ventricular hypertrophy and fibrosis. Int J Cardiol. 2017;249:467–72. https://doi.org/10.1016/j.ijcard.2017.07.087.

    Article  PubMed  Google Scholar 

  42. Vigneault DM, Yang E, Jensen PJ, Tee MW, Farhad H, Chu L, et al. Left ventricular strain is abnormal in preclinical and overt hypertrophic cardiomyopathy: cardiac MR feature tracking. Radiology. 2019;290:640–8. https://doi.org/10.1148/radiol.2018180339.

    Article  PubMed  Google Scholar 

  43. Shi R, An D, Chen B, Wu R, Wu C, Du L, et al. High T2-weighted signal intensity is associated with myocardial deformation in hypertrophic cardiomyopathy. Sci Rep. 2019;9:2644. https://doi.org/10.1038/s41598-019-39456-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Abdel-Aty H, Cocker M, Strohm O, Filipchuk N, Friedrich MG. Abnormalities in T2-weighted cardiovascular magnetic resonance images of hypertrophic cardiomyopathy: regional distribution and relation to late gadolinium enhancement and severity of hypertrophy. J Magn Reson Imaging. 2008;28:242–5. https://doi.org/10.1002/jmri.21381.

    Article  PubMed  Google Scholar 

  45. Todiere G, Pisciella L, Barison A, Del Franco A, Zachara E, Piaggi P, et al. Abnormal T2-STIR magnetic resonance in hypertrophic cardiomyopathy: a marker of advanced disease and electrical myocardial instability. PLoS One. 2014;9:e111366. https://doi.org/10.1371/journal.pone.0111366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hen Y, Takara A, Iguchi N, Utanohara Y, Teraoka K, Takada K, et al. High signal intensity on T2-weighted cardiovascular magnetic resonance imaging predicts life-threatening arrhythmic events in hypertrophic cardiomyopathy patients. Circ J. 2018;82:1062–9. https://doi.org/10.1253/circj.CJ-17-1235.

    Article  PubMed  Google Scholar 

  47. Amano Y, Yanagisawa F, Tachi M, Hashimoto H, Imai S, Kumita S. Myocardial T2 mapping in patients with hypertrophic cardiomyopathy. J Comput Assist Tomogr. 2017;41:344–8. https://doi.org/10.1097/RCT.0000000000000521.

    Article  PubMed  Google Scholar 

  48. McLellan A, Ellims AH, Prabhu S, Voskoboinik A, Iles LM, Hare JL, et al. Diffuse ventricular fibrosis on cardiac magnetic resonance imaging associates with ventricular tachycardia in patients with hypertrophic cardiomyopathy. J Cardiovasc Electrophysiol. 2016;27:571–80. https://doi.org/10.1111/jce.12948.

    Article  PubMed  Google Scholar 

  49. Avanesov M, Münch J, Weinrich J, Well L, Säring D, Stehning C, et al. Prediction of the estimated 5-year risk of sudden cardiac death and syncope or non-sustained ventricular tachycardia in patients with hypertrophic cardiomyopathy using late gadolinium enhancement and extracellular volume CMR. Eur Radiol. 2017;27:5136–45. https://doi.org/10.1007/s00330-017-4869-x.

    Article  PubMed  Google Scholar 

  50. Gastl M, Gotschy A, von Spiczak J, Polacin M, Bönner F, Gruner C, et al. Cardiovascular magnetic resonance T2* mapping for structural alterations in hypertrophic cardiomyopathy. Eur J Radiol Open. 2019;6:78–84. https://doi.org/10.1016/j.ejro.2019.01.007.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ariga R, Tunnicliffe EM, Manohar SG, Mahmod M, Raman B, Piechnik SK, et al. Identification of myocardial disarray in patients with hypertrophic cardiomyopathy and ventricular arrhythmias. J Am Coll Cardiol. 2019;73:2493–502. https://doi.org/10.1016/j.jacc.2019.02.065.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Shirani J, Pick R, Roberts WC, Maron BJ. Morphology and significance of the left ventricular collagen network in young patients with hypertrophic cardiomyopathy and sudden cardiac death. J Am Coll Cardiol. 2000;35:36–44. https://doi.org/10.1016/S0735-1097(99)00492-1.

    Article  CAS  PubMed  Google Scholar 

  53. Yin L, Xu H, Zheng S, Zhu Y, Xiao J, Zhou W, et al. 3.0 T magnetic resonance myocardial perfusion imaging for semi-quantitative evaluation of coronary microvascular dysfunction in hypertrophic cardiomyopathy. Int J Card Imaging. 2017;33:1949–59. https://doi.org/10.1007/s10554-017-1189-9.

    Article  Google Scholar 

  54. Villa ADM, Sammut E, Zarinabad N, Carr-White G, Lee J, Bettencourt N, et al. Microvascular ischemia in hypertrophic cardiomyopathy: new insights from high-resolution combined quantification of perfusion and late gadolinium enhancement. J Cardiovasc Magn Reson. 2015;18:4. https://doi.org/10.1186/s12968-016-0223-8.

    Article  Google Scholar 

  55. Xu H, Yang Z, Sun J, Wen L, Zhang G, Zhang S, et al. The regional myocardial microvascular dysfunction differences in hypertrophic cardiomyopathy patients with or without left ventricular outflow tract obstruction: assessment with first-pass perfusion imaging using 3.0-T cardiac magnetic resonance. Eur J Radiol. 2014;83:665–72. https://doi.org/10.1016/j.ejrad.2014.01.008.

    Article  PubMed  Google Scholar 

  56. Hinojar R, Zamorano JL, Gonzalez Gómez A, Plaza Martin M, Esteban A, Rincón LM, et al. ESC sudden-death risk model in hypertrophic cardiomyopathy: incremental value of quantitative contrast-enhanced CMR in intermediate-risk patients. Clin Cardiol. 2017;40:853–60. https://doi.org/10.1002/clc.22735.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Weng Z, Yao J, Chan RH, He J, Yang X, Zhou Y, et al. Prognostic value of LGE-CMR in HCM. JACC Cardiovasc Imaging. 2016;9:1392–402. https://doi.org/10.1016/j.jcmg.2016.02.031.

    Article  PubMed  Google Scholar 

  58. Chan RH, Maron BJ, Olivotto I, Pencina MJ, Assenza GE, Haas T, et al. Prognostic value of quantitative contrast-enhanced cardiovascular magnetic resonance for the evaluation of sudden death risk in patients with hypertrophic cardiomyopathy. Circulation. 2014;130:484–95. https://doi.org/10.1161/CIRCULATIONAHA.113.007094.

    Article  PubMed  Google Scholar 

  59. Briasoulis A, Mallikethi-Reddy S, Palla M, Alesh I, Afonso L. Myocardial fibrosis on cardiac magnetic resonance and cardiac outcomes in hypertrophic cardiomyopathy: a meta-analysis. Heart. 2015;101:1406–11. https://doi.org/10.1136/heartjnl-2015-307682.

    Article  CAS  PubMed  Google Scholar 

  60. ] Freitas P, Ferreira AM, Arteaga-Fernández E, de Oliveira Antunes M, Mesquita J, Abecasis J, et al. The amount of late gadolinium enhancement outperforms current guideline-recommended criteria in the identification of patients with hypertrophic cardiomyopathy at risk of sudden cardiac death. J Cardiovasc Magn Reson. 2019;21:50. https://doi.org/10.1186/s12968-019-0561-4This recent study highlights the prognostic relevance of LGE extent, rather than LGE presece alone, in predicting one of the most fearsome complication of HCM.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Wechalekar AD, Gillmore JD, Hawkins PN. Systemic amyloidosis. Lancet. 2016;387:2641–54. https://doi.org/10.1016/S0140-6736(15)01274-X.

    Article  CAS  PubMed  Google Scholar 

  62. Pozo E, Kanwar A, Deochand R, Castellano JM, Naib T, Pazos-López P, et al. Cardiac magnetic resonance evaluation of left ventricular remodelling distribution in cardiac amyloidosis. Heart. 2014;100:1688–95. https://doi.org/10.1136/heartjnl-2014-305710.

    Article  PubMed  Google Scholar 

  63. Martinez-Naharro A, Treibel TA, Abdel-Gadir A, Bulluck H, Zumbo G, Knight DS, et al. Magnetic resonance in transthyretin cardiac amyloidosis. J Am Coll Cardiol. 2017;70:466–77. https://doi.org/10.1016/j.jacc.2017.05.053.

    Article  CAS  PubMed  Google Scholar 

  64. Williams LK, Forero JF, Popovic ZB, Phelan D, Delgado D, Rakowski H, et al. Patterns of CMR measured longitudinal strain and its association with late gadolinium enhancement in patients with cardiac amyloidosis and its mimics. J Cardiovasc Magn Reson. 2017;19:61. https://doi.org/10.1186/s12968-017-0376-0.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Illman JE, Arunachalam SP, Arani A, Chang IC-Y, Glockner JF, Dispenzieri A, et al. MRI feature tracking strain is prognostic for all-cause mortality in AL amyloidosis. Amyloid. 2018;25:101–8. https://doi.org/10.1080/13506129.2018.1465406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ridouani F, Damy T, Tacher V, Derbel H, Legou F, Sifaoui I, et al. Myocardial native T2 measurement to differentiate light-chain and transthyretin cardiac amyloidosis and assess prognosis. J Cardiovasc Magn Reson. 2018;20:58. https://doi.org/10.1186/s12968-018-0478-3.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Kotecha T, Martinez-Naharro A, Treibel TA, Francis R, Nordin S, Abdel-Gadir A, et al. Myocardial edema and prognosis in amyloidosis. J Am Coll Cardiol. 2018;71:2919–31. https://doi.org/10.1016/j.jacc.2018.03.536.

    Article  PubMed  Google Scholar 

  68. Musumeci MB, Cappelli F, Russo D, Tini G, Canepa M, Melandri A et al. Low Sensitivity of Bone Scintigraphy in Detecting Phe64Leu Mutation-Related Transthyretin Cardiac Amyloidosis. JACC Cardiovasc Imaging. Epub ahead of print 18 December 2019. https://doi.org/10.1016/j.jcmg.2019.10.015.

  69. Wan K, Li W, Sun J, Xu Y, Wang J, Liu H, et al. Regional amyloid distribution and impact on mortality in light-chain amyloidosis: a T1 mapping cardiac magnetic resonance study. Amyloid. 2019;26:45–51. https://doi.org/10.1080/13506129.2019.1578742.

    Article  CAS  PubMed  Google Scholar 

  70. ] Baggiano A, Boldrini M, Martinez-Naharro A, Kotecha T, Petrie A, Rezk T, et al. Noncontrast magnetic resonance for the diagnosis of cardiac amyloidosis. JACC Cardiovasc Imaging. 2019. https://doi.org/10.1016/j.jcmg.2019.03.026This large study highlights the ability of native T1 for the diagnosis of cardiac amyloidosis, suggesting a possible diagnostic alghorithm to be used in patients in which adolinium contrast media cannot be administered.

  71. Martinez-Naharro A, Kotecha T, Norrington K, Boldrini M, Rezk T, Quarta C, et al. Native T1 and extracellular volume in transthyretin amyloidosis. JACC Cardiovasc Imaging. 2018. https://doi.org/10.1016/j.jcmg.2018.02.006.

  72. Lin L, Li X, Feng J, Shen K-N, Tian Z, Sun J, et al. The prognostic value of T1 mapping and late gadolinium enhancement cardiovascular magnetic resonance imaging in patients with light chain amyloidosis. J Cardiovasc Magn Reson. 2018;20:2. https://doi.org/10.1186/s12968-017-0419-6.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Yilmaz A. The “native T1 versus extracellular volume fraction paradox” in cardiac amyloidosis: answer to the million-dollar question? JACC Cardiovasc Imaging. 2019;12:820–2. https://doi.org/10.1016/j.jcmg.2018.03.029.

    Article  PubMed  Google Scholar 

  74. Da Nam B, Kim SM, Jung HN, Kim Y, Choe YH. Comparison of quantitative imaging parameters using cardiovascular magnetic resonance between cardiac amyloidosis and hypertrophic cardiomyopathy: inversion time scout versus T1 mapping. Int J Card Imaging. 2018;34:1769–77. https://doi.org/10.1007/s10554-018-1385-2.

    Article  Google Scholar 

  75. Boynton SJ, Geske JB, Dispenzieri A, Syed IS, Hanson TJ, Grogan M, et al. LGE provides incremental prognostic information over serum biomarkers in AL cardiac amyloidosis. JACC Cardiovasc Imaging. 2016;9:680–6. https://doi.org/10.1016/j.jcmg.2015.10.027.

    Article  PubMed  Google Scholar 

  76. Raina S, Lensing SY, Nairooz RS, Pothineni NVK, Hakeem A, Bhatti S, et al. Prognostic value of late gadolinium enhancement CMR in systemic amyloidosis. JACC Cardiovasc Imaging. 2016;9:1267–77. https://doi.org/10.1016/j.jcmg.2016.01.036.

    Article  PubMed  Google Scholar 

  77. Fontana M, Pica S, Reant P, Abdel-Gadir A, Treibel TA, Banypersad SM, et al. Prognostic value of late gadolinium enhancement cardiovascular magnetic resonance in cardiac amyloidosis. Circulation. 2015;132:1570–9. https://doi.org/10.1161/CIRCULATIONAHA.115.016567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Dungu JN, Valencia O, Pinney JH, Gibbs SDJ, Rowczenio D, Gilbertson JA, et al. CMR-based differentiation of AL and ATTR cardiac amyloidosis. JACC Cardiovasc Imaging. 2014;7:133–42. https://doi.org/10.1016/J.JCMG.2013.08.015.

    Article  PubMed  Google Scholar 

  79. Maurer MS, Schwartz JH, Gundapaneni B, Elliott PM, Merlini G, Waddington-Cruz M, et al. Tafamidis treatment for patients with transthyretin amyloid cardiomyopathy. N Engl J Med. 2018;379:1007–16. https://doi.org/10.1056/NEJMoa1805689.

    Article  CAS  PubMed  Google Scholar 

  80. Shintani Y, Okada A, Morita Y, Hamatani Y, Amano M, Takahama H, et al. Monitoring treatment response to tafamidis by serial native T1 and extracellular volume in transthyretin amyloid cardiomyopathy. ESC Heart Fail. 2019;6:232–6. https://doi.org/10.1002/ehf2.12382.

    Article  PubMed  Google Scholar 

  81. Mangion K, McDowell K, Mark PB, Rutherford E. Characterizing cardiac involvement in chronic kidney disease using CMR-a systematic review. Curr Cardiovasc Imaging Rep. 2018;11:2. https://doi.org/10.1007/s12410-018-9441-9.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Shamseddin MK, Parfrey PS. Sudden cardiac death in chronic kidney disease: epidemiology and prevention. Nat Rev Nephrol. 2011;7:145–54. https://doi.org/10.1038/nrneph.2010.191.

    Article  PubMed  Google Scholar 

  83. Park M, Hsu C, Li Y, Mishra RK, Keane M, Rosas SE, et al. Associations between kidney function and subclinical cardiac abnormalities in CKD. J Am Soc Nephrol. 2012;23:1725–34. https://doi.org/10.1681/ASN.2012020145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wald R, Goldstein MB, Perl J, Kiaii M, Yuen D, Wald RM, et al. The association between conversion to in-centre nocturnal hemodialysis and left ventricular mass regression in patients with end-stage renal disease. Can J Cardiol. 2016;32:369–77. https://doi.org/10.1016/j.cjca.2015.07.004.

    Article  PubMed  Google Scholar 

  85. Arnold R, Schwendinger D, Jung S, Pohl M, Jung B, Geiger J, et al. Left ventricular mass and systolic function in children with chronic kidney disease—comparing echocardiography with cardiac magnetic resonance imaging. Pediatr Nephrol. 2016;31:255–65. https://doi.org/10.1007/s00467-015-3198-z.

    Article  PubMed  Google Scholar 

  86. Edwards NC, Moody WE, Yuan M, Hayer MK, Ferro CJ, Townend JN, et al. Diffuse interstitial fibrosis and myocardial dysfunction in early chronic kidney disease. Am J Cardiol. 2015;115:1311–7. https://doi.org/10.1016/j.amjcard.2015.02.015.

    Article  PubMed  Google Scholar 

  87. ] Rutherford E, Talle MA, Mangion K, Bell E, Rauhalammi SM, Roditi G, et al. Defining myocardial tissue abnormalities in end-stage renal failure with cardiac magnetic resonance imaging using native T1 mapping. Kidney Int. 2016;90:845–52. https://doi.org/10.1016/j.kint.2016.06.014Comprehensive study describing morphologic and functional CMR findings, including interstitial fibrosis and cardiac mechanics assessment, in severe CKD patients.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Gong IY, Al-Amro B, Prasad GVR, Connelly PW, Wald RM, Wald R, et al. Cardiovascular magnetic resonance left ventricular strain in end-stage renal disease patients after kidney transplantation. J Cardiovasc Magn Reson. 2018;20:83. https://doi.org/10.1186/s12968-018-0504-5.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Hayer MK, Radhakrishnan A, Price AM, Baig S, Liu B, Ferro CJ, et al. Early effects of kidney transplantation on the heart - a cardiac magnetic resonance multi-parametric study. Int J Cardiol. 2019;293:272–7. https://doi.org/10.1016/j.ijcard.2019.06.007.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Kotecha T, Martinez-Naharro A, Yoowannakul S, Lambe T, Rezk T, Knight DS, et al. Acute changes in cardiac structural and tissue characterisation parameters following haemodialysis measured using cardiovascular magnetic resonance. Sci Rep. 2019;9:1388. https://doi.org/10.1038/s41598-018-37845-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Arcari L, Hinojar R, Carr-White G, Zainal H, Zhou H, Vasques M, et al. 24Excess of myocardial water and fibrosis define myocardial hypertrophy in uremic but not in hypertrophic cardiomyopathy - TrueTypeCKD study. Eur Heart J Cardiovasc Imaging. 2019;20. https://doi.org/10.1093/ehjci/jez111.002.

  92. Aoki J, Ikari Y, Nakajima H, Mori M, Sugimoto T, Hatori M, et al. Clinical and pathologic characteristics of dilated cardiomyopathy in hemodialysis patients. Kidney Int. 2005;67:333–40. https://doi.org/10.1111/J.1523-1755.2005.00086.X.

    Article  PubMed  Google Scholar 

  93. Chen M, Arcari L, Engel J, Freiwald T, Platschek S, Zhou H, et al. Aortic stiffness is independently associated with interstitial myocardial fibrosis by native T1 and accelerated in the presence of chronic kidney disease. IJC Heart Vasc. 2019;24:100389. https://doi.org/10.1016/J.IJCHA.2019.100389.

    Article  Google Scholar 

  94. Hayer MK, Price AM, Liu B, Baig S, Ferro CJ, Townend JN, et al. Diffuse myocardial interstitial fibrosis and dysfunction in early chronic kidney disease. Am J Cardiol. 2018;121:656–60. https://doi.org/10.1016/j.amjcard.2017.11.041.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Contti MM, Barbosa MF, del Carmen Villanueva Mauricio A, Nga HS, Valiatti MF, Takase HM, et al. Kidney transplantation is associated with reduced myocardial fibrosis. A cardiovascular magnetic resonance study with native T1 mapping. J Cardiovasc Magn Reson. 2019;21:21. https://doi.org/10.1186/s12968-019-0531-x.

    Article  PubMed  PubMed Central  Google Scholar 

  96. •• https://car.ca/news/new-car-guidelines-use-gadolinium-based-contrast-agents-kidney-disease/. Last Accessed November 4th 2019. Guidelines by the Canadian Association of Radiologists that explicitly allow macrocyclic gadolinium contrast media to be administered in patients with severe CKD, at the lowest dose required and when clinically indicated.

  97. Mohandas R, Segal MS, Huo T, Handberg EM, Petersen JW, Johnson BD, et al. Renal function and coronary microvascular dysfunction in women with symptoms/signs of ischemia. PLoS One. 2015;10:e0125374. https://doi.org/10.1371/journal.pone.0125374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Rutherford E, Weir-McCall JR, Patel RK, Houston JG, Roditi G, Struthers AD, et al. Research cardiac magnetic resonance imaging in end stage renal disease - incidence, significance and implications of unexpected incidental findings. Eur Radiol. 2017;27:315–24. https://doi.org/10.1007/s00330-016-4288-4.

    Article  PubMed  Google Scholar 

  99. Pelliccia A, Caselli S, Sharma S, Basso C, Bax JJ, Corrado D, et al. European Association of Preventive Cardiology (EAPC) and European Association of Cardiovascular Imaging (EACVI) joint position statement: recommendations for the indication and interpretation of cardiovascular imaging in the evaluation of the athlete’s heart. Eur Heart J. 2018;39:1949–69. https://doi.org/10.1093/eurheartj/ehx532.

    Article  PubMed  Google Scholar 

  100. ] Luijkx T, Cramer MJ, Prakken NHJ, Buckens CF, Mosterd A, Rienks R, et al. Sport category is an important determinant of cardiac adaptation: an MRI study. Br J Sports Med. 2012;46:1119–24. https://doi.org/10.1136/bjsports-2011-090520This study demonstrates that there is a balanced cardiac adaptation in term of left/right ventricular volume and LV volume/wall mass and that sport category has a strong impact on cardiac adaptation.

    Article  PubMed  Google Scholar 

  101. Maron BJ. Sudden death in young athletes. N Engl J Med. 2003;349:1064–75. https://doi.org/10.1056/NEJMra022783.

    Article  CAS  PubMed  Google Scholar 

  102. Pelliccia A, Maron BJ, Spataro A, Proschan MA, Spirito P. The upper limit of physiologic cardiac hypertrophy in highly trained elite athletes. N Engl J Med. 1991;324:295–301. https://doi.org/10.1056/NEJM199101313240504.

    Article  CAS  PubMed  Google Scholar 

  103. Maron BJ, Pelliccia A, Spirito P. Cardiac disease in young trained athletes: insights into methods for distinguishing athlete’s heart from structural heart disease, with particular emphasis on hypertrophic cardiomyopathy. Circulation. 1995;91:1596–601. https://doi.org/10.1161/01.CIR.91.5.1596.

    Article  CAS  PubMed  Google Scholar 

  104. Harrigan CJ, Appelbaum E, Maron BJ, Buros JL, Gibson CM, Lesser JR, et al. Significance of papillary muscle abnormalities identified by cardiovascular magnetic resonance in hypertrophic cardiomyopathy. Am J Cardiol. 2008;101:668–73. https://doi.org/10.1016/j.amjcard.2007.10.032.

    Article  PubMed  Google Scholar 

  105. Gruner C, Chan RH, Crean A, Rakowski H, Rowin EJ, Care M, et al. Significance of left ventricular apical-basal muscle bundle identified by cardiovascular magnetic resonance imaging in patients with hypertrophic cardiomyopathy. Eur Heart J. 2014;35:2706–13. https://doi.org/10.1093/eurheartj/ehu154.

    Article  PubMed  Google Scholar 

  106. Maron MS, Hauser TH, Dubrow E, Horst TA, Kissinger KV, Udelson JE, et al. Right ventricular involvement in hypertrophic cardiomyopathy. Am J Cardiol. 2007;100:1293–8. https://doi.org/10.1016/j.amjcard.2007.05.061.

    Article  PubMed  Google Scholar 

  107. Maron MS, Rowin EJ, Lin D, Appelbaum E, Chan RH, Gibson CM, et al. Prevalence and clinical profile of myocardial crypts in hypertrophic cardiomyopathy. Circ Cardiovasc Imaging. 2012;5:441–7. https://doi.org/10.1161/CIRCIMAGING.112.972760.

    Article  PubMed  Google Scholar 

  108. ] McDiarmid AK, Swoboda PP, Erhayiem B, Lancaster RE, Lyall GK, Broadbent DA, et al. Athletic cardiac adaptation in males is a consequence of elevated myocyte mass. Circ Cardiovasc Imaging. 2016;9. https://doi.org/10.1161/CIRCIMAGING.115.003579This study demonstrated with T1 mapping that increased left ventricular mass is due to an expansion of the cellular compartment while the extracellular volume becomes relatively smaller.

  109. Treibel TA, Kozor R, Menacho K, Castelletti S, Bulluck H, Rosmini S, et al. Left ventricular hypertrophy revisited: cell and matrix expansion have disease-specific relationships. Circulation. 2017;136:2519–21. https://doi.org/10.1161/CIRCULATIONAHA.117.029895.

    Article  PubMed  Google Scholar 

  110. Swoboda PP, Garg P, Levelt E, Broadbent DA, Zolfaghari-Nia A, Foley AJR, et al. Regression of left ventricular mass in athletes undergoing complete detraining is mediated by decrease in intracellular but not extracellular compartments. Circ Cardiovasc Imaging. 2019;12. https://doi.org/10.1161/circimaging.119.009417.

  111. Swoboda PP, McDiarmid AK, Erhayiem B, Broadbent DA, Dobson LE, Garg P, et al. Assessing myocardial extracellular volume by T1 mapping to distinguish hypertrophic cardiomyopathy from Athlete’s heart. J Am Coll Cardiol. 2016;67:2189–90. https://doi.org/10.1016/j.jacc.2016.02.054.

    Article  PubMed  Google Scholar 

  112. Zorzi A, Marra MP, Rigato I, De Lazzari M, Susana A, Niero A, et al. Nonischemic left ventricular scar as a substrate of life-threatening ventricular arrhythmias and sudden cardiac death in competitive athletes. Circ Arrhythm Electrophysiol. 2016;9. https://doi.org/10.1161/CIRCEP.116.004229.

  113. Hagège A, Réant P, Habib G, Damy T, Barone-Rochette G, Soulat G, et al. Fabry disease in cardiology practice: literature review and expert point of view. Arch Cardiovasc Dis. 2019;112:278–87. https://doi.org/10.1016/j.acvd.2019.01.002.

    Article  PubMed  Google Scholar 

  114. Perry R, Shah R, Saiedi M, Patil S, Ganesan A, Linhart A, et al. The role of cardiac imaging in the diagnosis and management of Anderson-Fabry disease. JACC Cardiovasc Imaging. 2019;12:1230–42. https://doi.org/10.1016/j.jcmg.2018.11.039.

    Article  PubMed  Google Scholar 

  115. Nordin S, Kozor R, Bulluck H, Castelletti S, Rosmini S, Abdel-Gadir A, et al. Cardiac Fabry disease with late gadolinium enhancement is a chronic inflammatory cardiomyopathy. J Am Coll Cardiol. 2016;68:1707–8. https://doi.org/10.1016/j.jacc.2016.07.741.

    Article  PubMed  Google Scholar 

  116. Deva DP, Hanneman K, Li Q, Ng MY, Wasim S, Morel C, et al. Cardiovascular magnetic resonance demonstration of the spectrum of morphological phenotypes and patterns of myocardial scarring in Anderson-Fabry disease. J Cardiovasc Magn Reson. 2016;18:14. https://doi.org/10.1186/s12968-016-0233-6.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Hsu T-R, Hung S-C, Chang F-P, Yu W-C, Sung S-H, Hsu C-L, et al. Later onset Fabry disease, cardiac damage progress in silence: experience with a highly prevalent mutation. J Am Coll Cardiol. 2016;68:2554–63. https://doi.org/10.1016/j.jacc.2016.09.943.

    Article  PubMed  Google Scholar 

  118. Valbuena-López S, Eiros R, Dalmau R, Guzmán G. Contemporary view of magnetic resonance imaging in Fabry disease. Curr Cardiovasc Imaging Rep. 2019;12:1–8. https://doi.org/10.1007/s12410-019-9498-0.

    Article  Google Scholar 

  119. Castaño A, Narotsky DL, Hamid N, Khalique OK, Morgenstern R, DeLuca A, et al. Unveiling transthyretin cardiac amyloidosis and its predictors among elderly patients with severe aortic stenosis undergoing transcatheter aortic valve replacement. Eur Heart J. 2017;38:2879–87. https://doi.org/10.1093/eurheartj/ehx350.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Rodrigues JCL, Amadu AM, Dastidar AG, Hassan N, Lyen SM, Lawton CB, et al. Prevalence and predictors of asymmetric hypertensive heart disease: insights from cardiac and aortic function with cardiovascular magnetic resonance. Eur Heart J Cardiovasc Imaging. 2016;17:1405–13. https://doi.org/10.1093/ehjci/jev329.

    Article  PubMed  Google Scholar 

  121. Kelly JP, Mentz RJ, Mebazaa A, Voors AA, Butler J, Roessig L, et al. Patient selection in heart failure with preserved ejection fraction clinical trials. J Am Coll Cardiol. 2015;65:1668–82. https://doi.org/10.1016/j.jacc.2015.03.043.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Duca F, Kammerlander AA, Zotter-Tufaro C, Aschauer S, Schwaiger ML, Marzluf BA, et al. Interstitial fibrosis, functional status, and outcomes in heart failure with preserved ejection fraction. Circ Cardiovasc Imaging. 2016;9. https://doi.org/10.1161/CIRCIMAGING.116.005277.

  123. Rommel KP, Von Roeder M, Latuscynski K, Oberueck C, Blazek S, Fengler K, et al. Extracellular volume fraction for characterization of patients with heart failure and preserved ejection fraction. J Am Coll Cardiol. 2016;67:1815–25. https://doi.org/10.1016/j.jacc.2016.02.018.

    Article  PubMed  Google Scholar 

  124. Pathan F, Puntmann VO, Nagel E. Role of cardiac magnetic resonance in heart failure with preserved ejection fraction. Curr Cardiovasc Imaging Rep. 2018;11:10–1. https://doi.org/10.1007/s12410-018-9450-8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Arcari.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of Topical Collection on Cardiac Magnetic Resonance

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolentinis, M., Maestrini, V., Vidalakis, E. et al. CMR in Hypertrophic Cardiac Conditions—an Update. Curr Cardiovasc Imaging Rep 13, 13 (2020). https://doi.org/10.1007/s12410-020-9533-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12410-020-9533-1

Keywords

Navigation