Skip to main content

Advertisement

Log in

Extracellular volume fraction assessed using cardiovascular magnetic resonance can predict improvement in left ventricular ejection fraction in patients with dilated cardiomyopathy

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

T1 mapping using cardiac magnetic resonance (CMR) is useful for myocardial assessment. However, its prognostic value is not well defined. The aim of this study was to determine whether T1 mapping with CMR can predict reverse cardiac remodeling in patients with non-ischemic dilated cardiomyopathy (NIDCM). We also investigated the predictive prognostic value of T1 mapping with CMR in these patients. We included 33 patients with NIDCM admitted to Nippon Medical School Hospital between February 2012 and October 2015. All patients underwent CMR and echocardiography for clinical assessment within 1 month of admission (13 ± 16 days). Follow-up echocardiography was performed no sooner than 6 months after the initial echocardiogram (536 ± 304 days). We evaluated the correlations between native and post-contrast T1 values/extracellular volume fraction (ECV) and the difference in left ventricular ejection fraction (ΔLVEF) determined at baseline and follow-up echocardiography. No correlation was noted between ΔLVEF and native (p = 0.150, r = − 0.256) or post-contrast T1 values (p = 0.956, r = − 0.010). However, a significant and substantial correlation was found between ΔLVEF and ECV (p = 0.043, r = − 0.355). Four patients were hospitalized for heart failure (HF), but no cardiovascular-related deaths occurred over a median follow-up period of 34 months (interquartile range 25–49 months). Kaplan–Meier curves stratified by the median value of ECV were created. The higher ECV groups experienced a significantly higher incidence of HF-related hospitalization (p = 0.0159). ECV measured by CMR can predict improvements in LVEF in patients with NIDCM. In addition, ECV may be a predictive factor for HF-related hospitalization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Arbustini E, Narula N, Tavazzi L, Serio A, Grasso M, Favalli V, Bellazzi R, Tajik JA, Bonow RO, Fuster V, Narula J (2014) The MOGE(S) classification of cardiomyopathy for clinicians. J Am Coll Cardiol 64:304–318

    Article  PubMed  Google Scholar 

  2. Elliott P, Andersson B, Arbustini E, Bilinska Z, Cecchi F, Charron P, Dubourg O, Kuhl U, Maisch B, McKenna WJ, Monserrat L, Pankuweit S, Rapezzi C, Seferovic P, Tavazzi L, Keren A (2008) Classification of the cardiomyopathies: a position statement from the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J 29:270–276

    Article  PubMed  Google Scholar 

  3. Felker GM, Thompson RE, Hare JM, Hruban RH, Clemetson DE, Howard DL, Baughman KL, Kasper EK (2000) Underlying causes and long-term survival in patients with initially unexplained cardiomyopathy. N Engl J Med 342:1077–1084

    Article  PubMed  CAS  Google Scholar 

  4. Brooks A, Schinde V, Bateman AC, Gallagher PJ (2003) Interstitial fibrosis in the dilated non-ischaemic myocardium. Heart 89:1255–1256

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Mewton N, Liu CY, Croisille P, Bluemke D, Lima JA (2011) Assessment of myocardial fibrosis with cardiovascular magnetic resonance. J Am Coll Cardiol 57:891–903

    Article  PubMed  Google Scholar 

  6. Ugander M, Oki AJ, Hsu LY, Kellman P, Greiser A, Aletras AH, Sibley CT, Chen MY, Bandettini WP, Arai AE (2012) Extracellular volume imaging by magnetic resonance imaging provides insights into overt and sub-clinical myocardial pathology. Eur Heart J 33:1268–1278

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Inui K, Tachi M, Saito T, Kubota Y, Murai K, Kato K, Takano H, Amano Y, Asai K, Shimizu W (2016) Superiority of the extracellular volume fraction over the myocardial T1 value for the assessment of myocardial fibrosis in patients with non-ischemic cardiomyopathy. Magn Reson Imaging 34:1141–1145

    Article  PubMed  Google Scholar 

  8. Kellman P, Wilson JR, Xue H, Bandettini WP, Shanbhag SM, Druey KM, Ugander M, Arai AE (2012) Extracellular volume fraction mapping in the myocardium, part 2: initial clinical experience. J Cardiovasc Magn Reson 14:64

    Article  PubMed  PubMed Central  Google Scholar 

  9. Puntmann VO, Voigt T, Chen Z, Mayr M, Karim R, Rhode K, Pastor A, Carr-White G, Razavi R, Schaeffer T, Nagel E (2013) Native T1 mapping in differentiation of normal myocardium from diffuse disease in hypertrophic and dilated cardiomyopathy. JACC Cardiovasc Imaging 6:475–484

    Article  PubMed  Google Scholar 

  10. aus dem Siepen F, Buss SJ, Messroghli D, Andre F, Lossnitzer D, Seitz S, Keller M, Schnabel PA, Giannitsis E, Korosoglou G, Katus HA, Steen H (2015) T1 mapping in dilated cardiomyopathy with cardiac magnetic resonance: quantification of diffuse myocardial fibrosis and comparison with endomyocardial biopsy. Eur Heart J Cardiovasc Imaging 16:210–216

    Article  PubMed  Google Scholar 

  11. Iles LM, Ellims AH, Llewellyn H, Hare JL, Kaye DM, McLean CA, Taylor AJ (2015) Histological validation of cardiac magnetic resonance analysis of regional and diffuse interstitial myocardial fibrosis. Eur Heart J Cardiovasc Imaging 16:14–22

    Article  PubMed  Google Scholar 

  12. de Meester de Ravenstein C, Bouzin C, Lazam S, Boulif J, Amzulescu M, Melchior J, Pasquet A, Vancraeynest D, Pouleur AC, Vanoverschelde JL, Gerber BL (2015) Histological Validation of measurement of diffuse interstitial myocardial fibrosis by myocardial extravascular volume fraction from modified look-locker imaging (MOLLI) T1 mapping at 3 T. J Cardiovasc Magn Reson 17:48

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wang S, Hu H, Lu M, Sirajuddin A, Li J, An J, Chen X, Yin G, Lan T, Dai L, Zhang Y, Yin Y, Song L, Dang A, Kellman P, Arai AE, Zhao S (2017) Myocardial extracellular volume fraction quantified by cardiovascular magnetic resonance is increased in hypertension and associated with left ventricular remodeling. Eur Radiol. https://doi.org/10.1007/s00330-017-4841-9

    Article  PubMed  PubMed Central  Google Scholar 

  14. Reis Filho JR, Cardoso JN, Cardoso CM, Pereira-Barretto AC (2015) Reverse cardiac remodeling: a marker of better prognosis in heart failure. Arq Bras Cardiol 104:502–506

    PubMed  Google Scholar 

  15. Wilcox JE, Fonarow GC, Yancy CW, Albert NM, Curtis AB, Heywood JT, Inge PJ, McBride ML, Mehra MR, O’Connor CM, Reynolds D, Walsh MN, Gheorghiade M (2012) Factors associated with improvement in ejection fraction in clinical practice among patients with heart failure: findings from IMPROVE HF. Am Heart J 163(49–56):e2

    Google Scholar 

  16. Yeh JK, Hsiao YC, Jian CR, Wang CH, Wen MS, Kuo CT, Tsai FC, Wu VC, Chen TH (2016) Comparison of baseline versus posttreatment left ventricular ejection fraction in patients with acute decompensated heart failure for predicting cardiovascular outcome: implications from single-center systolic heart failure cohort. PLoS One 11:e0145514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Perez-Baliño NA, Masoli OH, Meretta AH, Rodriguez A, Cragnolino DE, Perrone S, Boullon F, Mele E, Palacios I, Brown KA (1996) Amrinone stimulation test: ability to predict improvement in left ventricular ejection fraction after coronary bypass surgery in patients with poor baseline left ventricular function. J Am Coll Cardiol 28:1488–1492

    Article  PubMed  Google Scholar 

  18. Lee JJ, Liu S, Nacif MS, Ugander M, Han J, Kawei N, Sibley CT, Kellman P, Arai AE, Bluemke DA (2011) Myocardial T1 and extracellular volume fraction mapping at 3 tesla. J Cardiovasc Magn Reson 13:75

    Article  PubMed  PubMed Central  Google Scholar 

  19. Tachi M, Amano Y, Kobayashi Y, Mizuno K, Kumita S (2013) Evaluation of nonscarred myocardial T1 value using contrast-enhanced look-locker cardiac MRI and its relationship to cardiac function in dilated cardiomyopathy: comparison of 1.5 and 3.0 tesla MRI. J Magn Reson Imaging 38:1395–1401

    Article  PubMed  Google Scholar 

  20. Wong TC, Piehler K, Meier CG, Testa SM, Klock AM, Aneizi AA, Shakesprere J, Kellman P, Shroff SG, Schwartzman DS, Mulukutla SR, Siomn MA, Schelbert EB (2012) Association between extracellular matrix expansion quantified by cardiovascular magnetic resonance and short-term mortality. Circulation 126:1206–1216

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Emande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 28(1–39):e14

    Google Scholar 

  22. Moon JC, Messroghli DR, Kellman P, Piechnik SK, Robson MD, Ugander M, Gatehouse PD, Arai AE, Friedrich MG, Neubauer S, Schulz-Menger J, Schelbert EB (2013) Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. J Cardiovasc Magn Reson 15:92

    Article  PubMed  PubMed Central  Google Scholar 

  23. Jellis CL, Kwon DH (2014) Myocardial T1 mapping: modalities and clinical applications. Cardiovasc Diagn Ther 4:126–137

    PubMed  PubMed Central  Google Scholar 

  24. Iles L, Pfluger H, Phrommintikul A, Cherayath J, Aksit P, Gupta SN, Kaye DM, Taylor AJ (2008) Evaluation of diffuse myocardial fibrosis in heart failure with cardiac magnetic resonance contrast-enhanced T1 mapping. J Am Coll Cardiol 52:1574–1580

    Article  PubMed  Google Scholar 

  25. Ikeda Y, Inomata T, Fujita T, Iida Y, Nabeta T, Ishii S, Maekawa E, Yanagisawa T, Mizutani T, Naruke T, Koitabashi T, Takeuchi I, Ako J (2017) Cardiac fibrosis detected by magnetic resonance imaging on predicting time course diversity of left ventricular reverse remodeling in patients with idiopathic dilated cardiomyopathy. Heart Vessels. https://doi.org/10.1007/s00380-017-017-1069-1

    Article  PubMed Central  PubMed  Google Scholar 

  26. Ishii S, Inomata T, Fujita T, Iida Y, Ikeda Y, Nabeta T, Yanagisawa T, Naruke T, Mizutani T, Koitabashi T, Takeuchi I, Ako J (2016) Clinical significance of endomyocardial biopsy in conjunction with cardiac magnetic resonance imaging to predict left ventricular reverse remodeling in idiopathic dilated cardiomyopathy. Heart Vessels 31:1960–1968

    Article  PubMed  Google Scholar 

  27. Weber KT, Brilla CG (1991) Pathological hypertrophy and cardiac interstitium. Fibrosis and renin-angiotensin-aldosterone system. Circulation 83:1849–1865

    Article  PubMed  CAS  Google Scholar 

  28. Cohn JN, Ferrari R, Sharpe N (2000) Cardiac remodeling—concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling. J Am Coll Cardiol 35:569–582

    Article  PubMed  CAS  Google Scholar 

  29. Gulati A, Jabbour A, Ismail TF, Guha K, Khwaja J, Raza S, Morarji K, Brown TD, Ismail NA, Dweck MR, Di Pietro E, Roughton M, Wage R, Daryani Y, O’Hanlon R, Sheppard MN, Alpendurada F, Lyon AR, Cook SA, Cowie MR, Assomull RG, Pennell DJ, Prasad SK (2013) Association of fibrosis with mortality and sudden cardiac death in patients with nonischemic dilated cardiomyopathy. JAMA 309:896–908

    Article  PubMed  CAS  Google Scholar 

  30. Japp AG, Gulati A, Cook SA, Cowie MR, Prasad SK (2016) The diagnosis and evaluation of dilated cardiomyopathy. J Am Coll Cardiol 67:2996–3010

    Article  PubMed  Google Scholar 

  31. Querejeta R, Varo N, López B, Larman M, Artiñano E, Etayo JC, Martínez Ubago JL, Gutierrez-Stampa M, Emparanza JI, Gil MJ, Monreal I, Mindán JP, Díez J (2000) Serum carboxy-terminal propeptide of procollagen type I is a marker of myocardial fibrosis in hypertensive heart disease. Circulation 101:1729–1735

    Article  PubMed  CAS  Google Scholar 

  32. Heling A, Zimmermann R, Kostin S, Maeno Y, Hein S, Devaux B, Bauer E, Klövekorn WP, Schlepper M, Schaper W, Schaper J (2000) Increased expression of cytoskeletal, linkage, and extracellular proteins in failing human myocardium. Circ Res 86:846–853

    Article  PubMed  CAS  Google Scholar 

  33. Maisch B (1996) Ventricular remodeling. Cardiology 87(Suppl 1):2–10

    Article  PubMed  Google Scholar 

  34. Azevedo CF, Nigri M, Higuchi ML, Pomerantzeff PM, Spina GS, Sampaio RO, Tarasoutchi F, Grinberg M, Rochitte CE (2010) Prognostic significance of myocardial fibrosis quantification by histopathology and magnetic resonance imaging in patients with severe aortic valve disease. J Am Coll Cardiol 56:278–287

    Article  PubMed  Google Scholar 

  35. Duca F, Kammerlander AA, Zotter-Tufaro C, Aschauer S, Schwaiger ML, Marzluf BA, Bonderman D, Mascherbauer J (2016) Interstitial fibrosis, functional status, and outcomes in heart failure with preserved ejection fraction: insights from a prospective cardiac magnetic resonance imaging study. Circ Cardiovasc Imaging 9(12):e005277

    Article  PubMed  Google Scholar 

  36. Kammerlander AA, Marzluf BA, Zotter-Tufaro C, Aschauer S, Duca F, Bachmann A, Knechtelsdorfer K, Wiesinger M, Pfaffenberger S, Greiser A, Lang IM, Bonderman D, Mascherbauer J (2016) T1 mapping by CMR imaging: from histological validation to clinical implication. JACC Cardiovasc Imaging 9:14–23

    Article  PubMed  Google Scholar 

  37. Barison A, Del Torto A, Chiappino S, Aquaro GD, Todiere G, Vergaro G, Passino C, Lombardi M, Emdin M, Masci PG (2015) Prognostic significance of myocardial extracellular volume fraction in nonischemic dilated cardiomyopathy. J Cardiovasc Med 16:681–687

    Article  Google Scholar 

  38. Solomon SD, Skali H, Anavekar NS, Bourgoun M, Barvik S, Ghali JK, Warnica JW, Khrakovskaya M, Arnold JM, Schwartz Y, Velazquez EJ, Califf RM, McMurray JV, Pfeffer MA (2005) Changes in ventricular size and function in patients treated with valsartan, captopril, or both after myocardial infarction. Circulation 111:3411–3419

    Article  PubMed  CAS  Google Scholar 

  39. St John Sutton M, Pfeffer MA, Moye L, Plappert T, Rouleau JL, Lamas G, Rouleau J, Parker JO, Arnold MO, Sussex B, Braunwald E (1997) Cardiovascular death and left ventricular remodeling two years after myocardial infarction: baseline predictors and impact of long-term use of captopril: information from the Survival and Ventricular Enlargement (SAVE) trial. Circulation 96:3294–3299

    Article  PubMed  CAS  Google Scholar 

  40. Nagueh SF, Appleton CP, Gillebert TC, Marino PN, Oh JK, Smiseth OA, Waggoner AD, Flachskampf FA, Pellikka PA, Evangelista A (2009) Recommendations for the evaluation of left ventricular diastolic function by echocardiography. J Am Soc Echocardiogr 22:107–133

    Article  PubMed  Google Scholar 

  41. Nagueh SF, Smiseth OA, Appleton CP, Byrd BF 3rd, Dokainish H, Edvardsen T, Flachskampf FA, Gillebert TC, Klein AL, Lancellotti P, Marino P, Oh JK, Popescu BA, Waggoner AD (2016) Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 29:277–314

    Article  PubMed  Google Scholar 

  42. McMurray JJ, Adamopoulos S, Anker SD, Auricchio A, Böhm M, Dickstein K, Falk V, Filippatos G, Fonseca C, Gomez-Sanchez MA, Jaarsma T, Køber L, Lip GY, Maggioni AP, Parkhomenko A, Pieske BM, Popescu BA, Rønnevik PK, Rutten FH, Schwitter J, Seferovic P, Stepinska J, Trindade PT, Voors AA, Zannad F, Zeiher A (2012) ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur Heart J 33:1787–1847

    Article  PubMed  Google Scholar 

  43. Wang M, Yip G, Yu CM, Zhang Q, Zhang Y, Tse D, Kong SL, Sanderson JE (2005) Independent and incremental prognostic value of early mitral annulus velocity in patients with impaired left ventricular systolic function. J Am Coll Cardiol 45:272–277

    Article  PubMed  Google Scholar 

  44. Sharma R, Pellerin D, Gaze DC, Mehta RL, Gregson H, Streather CP, Collinson PO, Brecker SJ (2006) Mitral peak Doppler E-wave to peak mitral annulus velocity ratio is an accurate estimate of left ventricular filling pressure and predicts mortality in end-stage renal disease. J Am Soc Echocardiogr 19:266–273

    Article  PubMed  Google Scholar 

  45. Okura H, Takada Y, Kubo T, Iwata K, Mizoguchi S, Taguchi H, Toda I, Yoshikawa J, Yoshida K (2006) Tissue Doppler-derived index of left ventricular filling pressure, E/E′, predicts survival of patients with non-valvular atrial fibrillation. Heart 92:1248–1252

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Bruch C, Klem I, Breithardt G, Wichter T, Gradaus R (2007) Diagnostic usefulness and prognostic implications of the mitral E/E′ ratio in patients with heart failure and severe secondary mitral regurgitation. Am J Cardiol 100:860–865

    Article  PubMed  Google Scholar 

  47. Su MY, Lin LY, Tseng YH, Chang CC, Wu CK, Lin JL, Tseng WY (2014) CMR-verified diffuse myocardial fibrosis is associated with diastolic dysfunction in HFpEF. JACC Cardiovasc Imaging 7:991–997

    Article  PubMed  Google Scholar 

  48. Weintraub RG, Semsarian C, Macdonald P (2017) Dilated cardiomyopathy. Lancet 390(10092):400–414

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuniya Asai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 41 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inui, K., Asai, K., Tachi, M. et al. Extracellular volume fraction assessed using cardiovascular magnetic resonance can predict improvement in left ventricular ejection fraction in patients with dilated cardiomyopathy. Heart Vessels 33, 1195–1203 (2018). https://doi.org/10.1007/s00380-018-1154-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-018-1154-0

Keywords

Navigation