Skip to main content
Log in

Reliability of Cu Nanoparticles/Bi-Sn Solder Hybrid Bonding Under Cyclic Thermal Stresses

  • Materials for High Reliability Devices
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The influence of thermal cycle stress loading on hybrid bonding, which was formed by sintering a mixture of Cu nanoparticles and a eutectic Bi-Sn solder powder, has been investigated. A Si chip and a directly bonded aluminum (DBA) substrate were bonded using the hybrid bonding layer. The bonded sample was evaluated using a thermal cycle test (− 40°C and 250°C). The degradation process of the sample during the test was observed nondestructively using synchrotron radiation x-ray computed laminography. The thermal cycle stress loading had a minimal effect on the microstructure of the bonding layer, which has a high bonding strength owing to the liquid phase sintering and high decomposition melting temperature of the Cu-Sn compound formation. This property reduced the Al deformation of the DBA substrate caused by the thermal cycle loading, resulting in the suppression of the bonding layer degradation. Therefore, hybrid bonding can be instrumental in achieving the reliable operation of power modules at high temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Ohashi, I. Omura, S. Matsumoto, Y. Sato, H. Tadano, and I. Ishii, IEICE Trans. Commun. E87-B, 3422 (2004).

    Google Scholar 

  2. O. Kitazawa, T. Kikuchi, M. Nakashima, Y. Tomita, H. Kosugi, T. Kaneko, and S.A.E. Int, J. Alt. Power. 5, 278 (2016).

    Article  Google Scholar 

  3. T. Hasegawa, H. Imanishi, M. Nada and Y. Ikogi, SAE Tech. Paper 2016-01-1185 (2016).

  4. K. Hamada, M. Nagao, M. Ajioka, and F. Kawai, IEEE Trans. Electron. Dev. 62, 278 (2015).

    Article  Google Scholar 

  5. T. Sugiura, A. Tanida, K. Tamura, and S.A.E. Int, J. Alt. Power. 5, 294 (2016).

    Article  Google Scholar 

  6. T. Ogawa, A. Tanida, T. Yamakawa and M. Okamura, SAE Tech. Paper 2016-01-1230 (2016).

  7. Y. Yamada, Y. Takaku, Y. Yagi, I. Nakagawa, T. Atsumi, M. Shirai, I. Ohmura, and K. Ishida, Trans. Jpn. Inst. Electron. Packag. 79, 2 (2009).

    Google Scholar 

  8. H. Zhang, C. Chen, J. Jiu, S. Nagao, and K. Suganuma, J. Mater. Sci. Mater. Electro. Mater. Electron. 29, 8854 (2018).

    Article  Google Scholar 

  9. H.A. Mustain, W.D. Brown, and S.S. Ang, IEEE Trans. Compon. Packag. Technol. 33, 563 (2010).

    Article  Google Scholar 

  10. H. Ito, M. Kuwahara, H. Kadoura, and M. Usui, IET Power Electron. 12, 492 (2019).

    Article  Google Scholar 

  11. Y. Liu, S.N. Joshi, and E.M. Dede, J. Electron. Packag. 142, 011003 (2020).

    Article  Google Scholar 

  12. K.S. Siow and S.T. Chua, JOM 71, 3066 (2019).

    Article  Google Scholar 

  13. W.S. Hong, M.S. Kim, C. Oh, Y. Joo, Y. Kim, and K.-K. Hong, JOM 72, 889 (2020).

    Article  Google Scholar 

  14. R. Khazaka, L. Mendizabal, and D. Henry, J. Electron. Mater. 48, 2459 (2014).

    Article  Google Scholar 

  15. M.-S. Kim and H. Nishikawa, Mater. Sci. Eng. A 645, 264 (2015).

    Article  Google Scholar 

  16. S.A. Paknejad and S.H. Mannan, Microelectron. Reliab. 70, 1 (2017).

    Article  Google Scholar 

  17. T. Ishizaki and R. Watanabe, J. Mater. Chem. 22, 25198 (2012).

    Article  Google Scholar 

  18. O. Mokhtari and H. Nishikawa, J. Mater. Sci. Mater. Electron. 27, 4232 (2016).

    Article  Google Scholar 

  19. Y. Liu, B. Ren, M. Zhou, X. Zeng, and F. Sun, J. Mater. Sci. Mater. Electron. 31, 8258 (2020).

    Article  Google Scholar 

  20. T. Ishizaki, D. Miura, A. Kuno, R. Nagao, S. Aoki, Y. Ohshima, T. Kino, M. Usui, and Y. Yamada, Microelectron. Reliab. 64, 287 (2016).

    Article  Google Scholar 

  21. T. Satoh, T. Ishizaki, and K. Akedo, J. Alloy. Comput. 691, 524 (2017).

    Article  Google Scholar 

  22. Y. Mou, Y. Peng, Y. Zhang, H. Cheng, and M. Chen, Mater. Lett. 227, 179 (2018).

    Article  Google Scholar 

  23. J. Xie, J. Shen, J. Deng, and X. Chen, J. Electron. Mater. 49, 2669 (2020).

    Article  Google Scholar 

  24. M. Usui, H. Kimura, T. Satoh, T. Asada, S. Yamaguchi, and M. Kato, Microelectron. Reliab. 63, 152 (2016).

    Article  Google Scholar 

  25. T. Satoh, T. Ishizaki, and M. Usui, Mater. Des. 124, 203 (2017).

    Article  Google Scholar 

  26. T. Satoh, T. Ishizaki, and M. Usui, J. Mater. Sci. Mater. Electron. 29, 7161 (2018).

    Article  Google Scholar 

  27. M. Usui, T. Satoh, H. Kimura, S. Tajima, Y. Hayashi, D. Setoyama, and M. Kato, Microelectron. Reliab. 78, 93 (2017).

    Article  Google Scholar 

  28. L. Helfen, F. Xu, H. Suhonen, P. Cloetens, and T. Baumbach, J. Phys. Conf. Ser. 425, 192025 (2013).

    Article  Google Scholar 

  29. J.O. Suh, K.N. Tu, and N. Tamura, JOM 58, 63 (2006).

    Article  Google Scholar 

  30. X. Milhet, A. Nait-Ali, D. Tandiang, Y.-J. Liu, D. Van Campen, V. Caccuri, and M. Legros, Acta Mater. 156, 310 (2018).

    Article  Google Scholar 

  31. D.T. Chu, Y.-C. Chu, J.-A. Lin, Y.-T. Chen, C.-C. Wang, Y.-F. Song, C.-C. Chiang, C. Chen, and K.N. Tu, Microelectron. Reliab. 79, 32 (2017).

    Article  Google Scholar 

  32. H. Tsuritani, T. Sayama, Y. Okamoto, T. Takayanagi, M. Hoshino, K. Uesugi, J. Ooi and T. Mori, Proc. ASME 2017 IPACK 2017-74177 (2017) V001T01A015.

  33. M. Hoshino, K. Uesugi, A. Takeuchi, Y. Suzuki, and N. Yagi, Rev. Sci. Instrum. 82, 073706 (2011).

    Article  Google Scholar 

  34. T. Asada, H. Kimura, S. Yamaguchi, S. Hayashi and Y. Uyama, Proc. Int. Conf. Adv. Technol. Exp. Mech. 48 (2015).

  35. H. Kimura, M. Usui, M. Kamiyama, T. Asada, S. Yamaguchi, D. Setoyama, and T. Satoh, R&D Rev. Toyota CRDL 50–1, 39 (2019).

    Google Scholar 

  36. T. Nonaka, K. Dohmae, Y. Hayashi, T. Araki, S. Yamaguchi, Y. Nagai, Y. Hirose, T. Tanaka, H. Kitamura, T. Uruga, H. Yamazaki, H. Yumoto, H. Ohashi, S. Goto, and A.I.P. Conf, Proc. 1741, 030043 (2016).

    Google Scholar 

  37. Y. Hirose, SPring-8 Research Frontiers 2009, 170 (2009).

  38. L. Wang, M. Li, J. Almer, T. Bieler, and R. Barabash, Front. Mater. Sci. 7, 156 (2013).

    Google Scholar 

  39. J.J. Williams, Z. Flom, A.A. Amell, N. Chawla, X. Xiao, and F. De Carlo, Acta Mater. 102, 220 (2016).

    Article  Google Scholar 

  40. Y. Hayashi, Y. Hirose, and Y. Seno, J. Appl. Crystallogr. 48, 1094 (2015).

    Article  Google Scholar 

  41. D. Setoyama, Y. Hayashi, and N. Iwata, Mater. Sci. Forum 777, 142 (2014).

    Article  Google Scholar 

  42. Y. Hayashi, D. Setoyama, Y. Hirose, T. Yoshida, and H. Kimura, Science 366, 1492 (2020).

    Article  Google Scholar 

  43. K. Tanaka, Y. Akiniwa, JSME Int. J., 47-3, 252 (2004).

  44. T. Satoh and M. Usui, J. Mater. Sci. Mater. Electron. 31, 6547 (2020).

    Article  Google Scholar 

  45. Y. Yanaka, Y. Kariya, H. Watanabe, and H. Hokazono, Mater. Trans. 57, 819 (2016).

    Article  Google Scholar 

  46. W.H. Tao, C. Chen, C.E. Ho, W.T. Chen, and C.R. Kao, Chem. Mater. 13, 1051 (2001).

    Article  Google Scholar 

  47. Y. Nagatomo, T. Kitahara, T. Nagase, Y. Kuromitsu, H. Sosiati, and N. Kuwano, Mater. Trans. 49, 2808 (2008).

    Article  Google Scholar 

  48. T. Gua. Lei, J. N. Calata, K. D. T. Ngo and G.-Q. Lu, IEEE Trans. Dev. Mater. Reliab. https://doi.org/10.1109/tdmr.2009.2033668.

  49. C. Pei, C. Chen, K. Suganuma, and G. Fu, J. Electron. Mater. 47, 811 (2018).

    Article  Google Scholar 

  50. S. Nishimoto, S.A. Moeini, T. Ohashi, Y. Nagatomo, and P. McCluskey, Microelectron. Reliab. 87, 232 (2018).

    Article  Google Scholar 

  51. D. Kim, C. Chen, S.-J. Lee, S. Nagao, and K. Suganuma, J. Mater. Sci. Mater. Electron. 31, 3715 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

The synchrotron radiation x-ray experiments were performed at the BL33XU (Toyota beamline) of SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal Nos. 2017A7012, 2017B7012, and 2018B7012). The authors would like to thank Mr. Kuwahara for the technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masanori Usui.

Ethics declarations

Conflict of interest

The authors claim no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Usui, M., Satoh, T., Kamiyama, M. et al. Reliability of Cu Nanoparticles/Bi-Sn Solder Hybrid Bonding Under Cyclic Thermal Stresses. JOM 73, 600–608 (2021). https://doi.org/10.1007/s11837-020-04521-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04521-w

Navigation