Skip to main content
Log in

Effect of bismuth–tin composition on bonding strength of zinc particle–mixed copper nanoparticle/bismuth–tin solder hybrid joint

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, the effect of Bi–Sn composition on the bonding strength of Zn-mixed hybrid joints composed of SiC/Cu and SiC/direct bonded copper (DBC) was examined. For both joints, the bonding strength exhibited a similar dependence on Bi–Sn composition, and the maximum strength obtained for the average Bi fraction in the Bi–Sn alloy particles was 38.2 wt%. This composition is more Sn-rich than the eutectic composition of the Bi–Sn alloy. The bonding strength of the SiC/Cu joints was lower than that of the SiC/DBC joints throughout the entire Bi–Sn alloy composition range. The degree of Bi segregation at the interfacial region decreased with a decreasing Bi fraction in the Bi–Sn particles and was correlated with the bonding strength for the Bi fraction below 38.2 wt%. Defects such as voids and cracks were also observed in the bonding layer, which were likely a result of the difference in the bonding strengths between the SiC/Cu and SiC/DBC joints. Furthermore, delamination of the bonding layer at the interface was observed in the joint that had Sn particles as the starting material. These results indicate that Zn mixing in the hybrid joint enables the reduction of the Bi fraction of the Bi–Sn alloy, leading to improved bonding strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. P.G. Neudeck, R.S. Okojie, L.Y. Chen, Proc. IEEE 90, 1065 (2002)

    Google Scholar 

  2. G. Liu, B.R. Tuttle, S. Dhar, Appl. Phys. Rev. 2, 021307 (2015)

    Google Scholar 

  3. T. Kimoto, Jpn. J. Appl. Phys. 54, 040103 (2015)

    Google Scholar 

  4. J.B. Casady, R.W. Johnson, Solid State Electron. 39, 1409 (1996)

    Google Scholar 

  5. M. Willander, M. Friesel, Q.-U. Wahab, B. Straumal, J. Mater. Sci. Mater. Electron. 17, 1 (2006)

    CAS  Google Scholar 

  6. C. Buttay, D. Planson, B. Allard, D. Bergogne, P. Bevilacqua, C. Jobert, M. Lazar, C. Martin, H. Morel, D. Tournier, C. Raynaud, Mater. Sci. Eng. B 176, 283 (2011)

    CAS  Google Scholar 

  7. T. Laurila, V. Vuorinen, J.K. Kivilahti, Mater. Sci. Eng. R 49, 1 (2005)

    Google Scholar 

  8. H. Ma, J.C. Suhling, J. Mater. Sci. 44, 1141 (2009)

    CAS  Google Scholar 

  9. L. Zhang, C. He, Y. Guo, J. Han, Y. Zhang, X. Wang, Microelectron. Reliab. 52, 559 (2012)

    CAS  Google Scholar 

  10. E. Ide, S. Angata, A. Hirose, K.F. Kobayashi, Acta Mater. 53, 2385 (2005)

    CAS  Google Scholar 

  11. K.S. Siow, J. Electron. Mater. 43, 947 (2014)

    CAS  Google Scholar 

  12. T. Ishizaki, R. Watanabe, J. Mater Chem. 22, 25198 (2012)

    CAS  Google Scholar 

  13. T. Ishizaki, T. Satoh, A. Kuno, A. Tane, M. Yanase, F. Osawa, Y. Yamada, Microelectron. Reliab. 53, 1543 (2013)

    CAS  Google Scholar 

  14. T. Yamakawa, T. Takemoto, M. Shimoda, H. Nishikawa, K. Shiokawa, N. Terada, J. Electron. Mater. 42, 1260 (2013)

    CAS  Google Scholar 

  15. Y. Kobayashi, T. Shirochi, Y. Yasuda, T. Morita, Int. J. Adhes. Adhes. 33, 50 (2012)

    CAS  Google Scholar 

  16. J. Liu, H. Chen, H. Ji, M. Li, A.C.S. Appl, Mater. Interfaces 8, 33289 (2016)

    CAS  Google Scholar 

  17. J. Li, C.M. Johnson, C. Buttay, W. Sabbah, S. Azzopardi, J. Mater. Process. Technol. 215, 299 (2015)

    CAS  Google Scholar 

  18. K.D. Min, K.H. Jung, C.J. Lee, H. Jeong, S.B. Jung, J. Mater. Sci. Mater. Electron. 30, 18848 (2019)

    CAS  Google Scholar 

  19. N.S. Bosco, F.W. Zok, Acta Mater. 52, 2965 (2004)

    CAS  Google Scholar 

  20. B.-S. Lee, S.-K. Hyun, J.-W. Yoon, J. Mater. Sci. Mater. Electron. 28, 7827 (2017)

    CAS  Google Scholar 

  21. Z.-L. Li, H. Tian, H.-J. Dong, X.-J. Guo, X.-G. Song, H.-Y. Zhao, Z.-C. Feng, Scripta Mater. 156, 1 (2018)

    CAS  Google Scholar 

  22. M.K. Faiz, K. Bansho, T. Suga, T. Miyashita, M. Yoshida, J. Mater. Sci. Mater. Electron. 28, 16433 (2017)

    Google Scholar 

  23. F. Lang, H. Yamaguchi, H. Nakagawa, H. Sato, J. Electrochem. Soc. 160, D315 (2013)

    CAS  Google Scholar 

  24. S. Fukumoto, K. Miyake, S. Tatara, M. Matsushima, K. Fujimoto, Mater. Trans. 56, 1019 (2015)

    CAS  Google Scholar 

  25. Z.X. Zhu, C.C. Li, L.L. Liao, C.K. Liu, C.R. Kao, J. Alloys Compd. 671, 340 (2016)

    CAS  Google Scholar 

  26. O. Mokhtari, H. Nishikawa, J. Mater. Sci.: Mater. Electron. 27, 4232 (2016)

    CAS  Google Scholar 

  27. T. Satoh, T. Ishizaki, M. Usui, Mater. Des. 124, 203 (2017)

    CAS  Google Scholar 

  28. P.L. Liu, J.K. Shang, Scripta Mater. 44, 1019 (2001)

    CAS  Google Scholar 

  29. H.F. Zou, Q.K. Zhang, Z.F. Zhang, Scripta Mater. 61, 308 (2009)

    CAS  Google Scholar 

  30. F. Wang, L. Zhou, X. Wang, P. He, J. Alloys Compd. 688, 639 (2016)

    CAS  Google Scholar 

  31. Z. Wang, Q.K. Zhang, Y.X. Chen, Z.L. Song, J. Mater. Sci. Mater. Electron. 30, 18524 (2019)

    CAS  Google Scholar 

  32. S. Tajima, T. Satoh, T. Ishizaki, M. Usui, J. Mater. Sci. Mater. Electron. 28, 1764 (2017)

    Google Scholar 

  33. T. Satoh, T. Ishizaki, M. Usui, J. Mater. Sci. Mater. Electron. 29, 7161 (2018)

    CAS  Google Scholar 

  34. T. Satoh, M. Usui, J. Mater. Sci. Mater. Electron. 29, 20415 (2018)

    CAS  Google Scholar 

  35. T. Ishizaki, K. Akedo, T. Satoh, R. Watanabe, J. Electron. Mater. 43, 774 (2014)

    CAS  Google Scholar 

  36. T. Satoh, T. Ishizaki, K. Akedo, J. Electron. Mater. 46, 1279 (2017)

    CAS  Google Scholar 

  37. S.-M. Lee, J.-W. Yoon, S.B. Jung, J. Mater. Sci. Mater. Electron. 26, 1649 (2015)

    CAS  Google Scholar 

  38. P. Villars (Chief Editor), Ag-Bi binary phase diagram 0–100 at.% Bi, in PAULING FILE in Inorganic Solid Phases, (Springer, Heidelberg, 2016). https://materials.springer.com/isp/phase-diagram/docs/c_0906212. Accessed 12 Apr 2017

  39. K.M. Asl, J. Luo, Acta Mater. 60, 149 (2012)

    CAS  Google Scholar 

  40. Y. Yanaka, Y. Kariya, H. Watanabe, H. Hokazono, Mater. Trans. 57, 819 (2016)

    CAS  Google Scholar 

  41. W.H. Tao, C. Chen, C.E. Ho, W.T. Chen, C.R. Kao, Chem. Mater. 13, 1051 (2001)

    CAS  Google Scholar 

  42. J. Gröbner, Bi-Sn-Zn (Bismuth-Tin-Zinc), in Landolt-Börnstein—Group IV Physical Chemistry 11C3 (Non-Ferrous Metal Systems. Part 3), ed. by G. Effenberg, S. Ilyenko (Springer, Berlin, 2007). https://materials.springer.com/lb/docs/sm_lbs_978-3-540-47004-5_22. Accessed 9 July 2018

  43. C. Chou, S. Chen, Acta Mater. 54, 2393 (2006)

    CAS  Google Scholar 

  44. S.-W. Yoon, M.D. Glover, K. Shiozaki, I.E.E.E. Trans, Power Electron. 28, 2448 (2013)

    Google Scholar 

  45. A.D. LeClaire, G. Neumann, Diffusion of impurities in solid metallic elements, in Landolt-Börnstein—Group III Condensed Matter 26 (Diffusion in Solid Metals and Alloys), ed. by H. Mehrer (Springer, Berlin, 1990). https://materials.springer.com/lb/docs/sm_lbs_978-3-540-46109-8_29. Accessed 9 May 2018

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshikazu Satoh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satoh, T., Usui, M. Effect of bismuth–tin composition on bonding strength of zinc particle–mixed copper nanoparticle/bismuth–tin solder hybrid joint. J Mater Sci: Mater Electron 31, 6547–6559 (2020). https://doi.org/10.1007/s10854-020-03211-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03211-2

Navigation