Skip to main content

Advertisement

Log in

High-temperature reliability of low-temperature and pressureless micron Ag sintered joints for die attachment in high-power device

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Micron Ag paste had a more affordable price, feasible large-scale synthesis, and longer storage life compared to nano Ag paste, thus it attracts much industrial interest for die attachment of high-power devices. However, the previous studies of high-temperature reliability were mainly focused on nano Ag joints, the research about reliability of micron Ag joints, especially low-temperature and pressureless, was very limited. Therefore, we evaluated high-temperature stability of low-temperature and pressureless micron Ag joint, involving in the changes of mechanical behaviors, evolution of microstructure and interfacial reliability. The average joint strength of micron Ag joints was independent of aging time and kept approximately 35 MPa after aging for 1000 h. The fracture of the micron joint was dominated by the ductile deformation of Ag grains during the fracture process. On the other hand, the microstructure of porous structure evolved greatly during aging process. Ag grains were oriented randomly before and after aging process, but the Ag grains increased slightly from 827.2 nm initially to 1178.4 nm after 1000 h aging. Meanwhile, the pores size in porous structure increased, the number decreased significantly, and the porosity also decreased slightly. Moreover, the barrier layers at interfaces of micron Ag joint remained stable and reliable during aging at 250 °C. The results would promote the large-scale application of the commercially available micron Ag paste in high-power devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.B. Casady, R.W. Johnson, Solid-State Electron. 39, 1409 (1996)

    Article  Google Scholar 

  2. U.K. Mishra, L. Shen, T.E. Kazior, Y.F. Wu, Proc. IEEE 96, 287, (2008)

    Article  CAS  Google Scholar 

  3. K. Suganuma, S. Sakamoto, N. Kagami, D. Wakuda, K.S. Kim, M. Nogi, Microelectron. Reliab. 52, 375 (2012)

    Article  CAS  Google Scholar 

  4. P.G. Neudeck, R.S. Okojie, L.Y. Chen, Proc. IEEE 90, 1065 (2002)

    Article  Google Scholar 

  5. M. Abtew, G. Selvaduray, Mater. Sci. Eng. R 27, 95 (2000)

    Article  Google Scholar 

  6. K. Suganuma, Curr. Opin. Solid State Mater. Sci. 5, 55 (2001)

    Article  CAS  Google Scholar 

  7. G.S. Zhang, H.Y. Jing, L.Y. Xu, J. Wei, Y.D. Han, J. Alloy. Compd. 476, 138 (2009)

    Article  CAS  Google Scholar 

  8. V. Chidambaram, J. Hattel, J. Hald, Microelectron. Eng. 88, 981 (2011)

    Article  CAS  Google Scholar 

  9. J.C. Liu, S. Park, S. Nagao et al., Corros. Sci. 92, 263 (2015)

    Article  CAS  Google Scholar 

  10. E. Ide, S. Angata, A. Hirose, K.F. Kobayashi, Acta Mater. 53, 2385 (2005)

    Article  CAS  Google Scholar 

  11. K.S. Siow, J. Electron. Mater. 43, 947 (2014)

    Article  CAS  Google Scholar 

  12. S.A. Paknejad, G. Dumas, G. West, G. Lewis, S.H. Mannan, J. Alloy. Compd. 617, 994 (2014)

    Article  CAS  Google Scholar 

  13. J. Yan, G. Zou, A. Wu et al., Scr. Mater. 66, 582 (2012)

    Article  CAS  Google Scholar 

  14. H. Ogura, M. Maruyama, R. Matsubayashi et al., J. Electron. Mater. 39, 1233 (2010)

    Article  CAS  Google Scholar 

  15. H. Yu, L. Li, Y. Zhang, Scr. Mater. 66, 931 (2012)

    Article  CAS  Google Scholar 

  16. T.G. Lei, J.N. Calata, G.Q. Lu, X. Chen, S. Luo, IEEE Trans. Compon. Packag. Technol. 33, 98 (2010)

    Article  CAS  Google Scholar 

  17. M. Maruyama, R. Matsubayashi, H. Iwakuro, S. Isoda, T. Komatsu, Appl. Phys. A 93, 467 (2008)

    Article  CAS  Google Scholar 

  18. R. Khazaka, L. Mendizabal, D. Henry, J. Electron. Mater. 43, 2459 (2014)

    Article  CAS  Google Scholar 

  19. G.Q. Lu, J.N. Calata, T.G. Lei, (2008) 2008 5th International Conference on Integrated Power Systems, CIPS 2008

  20. S. Wang, M. Li, H. Ji, C. Wang, Scr. Mater. 69, 789 (2013)

    Article  CAS  Google Scholar 

  21. J. Jiu, H. Zhang, S. Koga, S. Nagao, Y. Izumi, K. Suganuma, J. Mater. Sci. 26, 7183 (2015)

    CAS  Google Scholar 

  22. H. Nishikawa, X. Liu, X. Wang, A. Fujita, N. Kamada, M. Saito, Mater. Lett. 161, 231 (2015)

    Article  CAS  Google Scholar 

  23. G. Zeng, S. Yu, Y. Gao, C. Liu, X. Han, Mater. Sci. Eng. A 645, 273 (2015)

    Article  CAS  Google Scholar 

  24. S. Yu, C. Liu, Y. Gao, S. Jiang, Y. Yao, Mater. Sci. Eng. A 689, 40 (2017)

    Article  CAS  Google Scholar 

  25. J. Jiu, H. Zhang, S. Nagao et al., J. Mater. Sci. 51, 3422 (2016)

    Article  CAS  Google Scholar 

  26. H. Zhang, Y. Gao, J. Jiu, K. Suganuma, J. Alloy. Compd. 696, 123 (2017)

    Article  CAS  Google Scholar 

  27. K. Suganuma, J.M. Song, Y.S. Lai, Microelectron. Reliab. 55, 2523 (2015)

    Article  Google Scholar 

  28. P. Gadaud, V. Caccuri, D. Bertheau, J. Carr, X. Milhet, Mater. Sci. Eng. A 669, 379 (2016)

    Article  CAS  Google Scholar 

  29. C. Chen, S. Nagao, K. Suganuma et al., Acta Mater. 129, 41 (2017)

    Article  CAS  Google Scholar 

  30. X. Milhet, P. Gadaud, V. Caccuri, D. Bertheau, D. Mellier, M. Gerland, J. Electron. Mater. 44, 3948 (2015)

    Article  CAS  Google Scholar 

  31. S. Zabihzadeh, S. Van Petegem, L.I. Duarte, R. Mokso, A. Cervellino, H. Van Swygenhoven, Acta Mater. 97, 116 (2015)

    Article  CAS  Google Scholar 

  32. S. Chen, G. Fan, X. Yan, C. LaBarbera, L. Kresge, N.C. Lee, (2014) Proceedings—2014 47th International Symposium on Microelectronics, IMAPS 2014

  33. S. Chen, C. Labarbera, N.C. Lee, (2016) IMAPS International Conference and Exhibition on High Temperature Electronics, HiTEC 2016

  34. W. Guo, H. Zhang, X. Zhang et al., J. Alloy. Compd. 690, 86 (2017)

    Article  CAS  Google Scholar 

  35. H. Zhang, G. Zou, L. Liu et al., J. Mater. Sci. 52, 3375 (2017)

    Article  CAS  Google Scholar 

  36. H. Zhang, G. Zou, L. Liu et al., Appl. Phys. A 122, 896 (2016)

    Article  Google Scholar 

  37. E.O. Hall, Proc. Phys. Soc. B 64, 747 (1951)

    Article  Google Scholar 

  38. S.F. Pugh, London, Edinburgh, Dublin Philos. Mag. J. Sci. 45, 823 (1954)

    Article  CAS  Google Scholar 

  39. J. Ordonez-Miranda, M. Hermens, I. Nikitin et al., Int. J. Therm. Sci. 108, 185 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was also partly supported by the JST Advanced Low Carbon Technology Research and Development Program (ALCA) project “Development of a high frequency GaN power module package technology”. H. Zhang acknowledges the financial support from China Scholarship Council for his PhD research in Osaka University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuantong Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Chen, C., Jiu, J. et al. High-temperature reliability of low-temperature and pressureless micron Ag sintered joints for die attachment in high-power device. J Mater Sci: Mater Electron 29, 8854–8862 (2018). https://doi.org/10.1007/s10854-018-8903-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8903-9

Navigation