Skip to main content
Log in

Review on Joint Shear Strength of Nano-Silver Paste and Its Long-Term High Temperature Reliability

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Soldering has been the main die attach technology for several decades. Recently, in order to meet the high temperature electronic requirements (high temperature-operating SiC and GaN devices) as well as the health recommendations (replacing the toxic lead present in common solder alloys with lead-free alternatives), several new attach technologies have been developed. Among others, the sintering of nano-silver particles seems to be one of the most interesting choices, and has been extensively investigated during recent years. The emergence of this technology is mainly due to the desired high electrical and high thermal conductivities of the sintered joint, its low elastic modulus offering a good thermo-mechanical reliability, its low process temperature, and its high operating temperature. In this paper, a review of parameters affecting the initial shear strength of the sintered silver joint will be summarized as well as the high temperature long-term reliability issues. The sintering cycle (bonding pressure, bonding temperature, sintering dwell time, heating rate, and the sintering atmosphere), the joint size, and the attached materials properties (nature, roughness), are found to closely affect the initially measured shear strength of the joint. The long-term reliability of the joint has been shown to suffer initially from three phenomena: the silver electro-migration, the decrease of shear strength under harsh thermo-mechanical stresses, and the swelling of the sintered layer. While the latter phenomenon is observed during the storage at temperatures above 350°C, the electro-migration and thermo-mechanical stresses can influence the package reliability at temperatures as low as 250°C. However, some suggested precautions during the module fabrication can lead to the minimizing of the effects of these phenomena and the achievem a more reliable joint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Kyung-ah, L. Anna, L. Gerald, G. Manuel, H. Toshiro, H. Richard, S. Leif, and S. William, Nanosci. Nanotechnol. Lett. 2, 332–336 (2010).

    Article  Google Scholar 

  2. T. Funaki, J.C. Balda, J. Junghans, A.A. Kashyap, F.D. Barlow, H.A. Mantooth, T. Kimoto, and T. Hikihara, IEICE Electron. Express 1, 523–527 (2004).

    Article  Google Scholar 

  3. C. Buttay, A. Masson, J. Li, M. Johnson, M. Lazar, C. Raynaud, and H. Morel, Die Attach of Power Devices Using Silver Sintering Bonding Process Optimization and Characterization, IMAPS High Temperature Electronics Network HITEN, (Oxford, 2011).

  4. M. Knoerr, S. Kraft, and A. Schletz, Reliability Assessment of Sintered Nano-Silver Die Attachment for Power Semiconductors, 12th Electronics Packaging Technology Conference, (Singapore, 2010).

  5. S.J. Pearton, J.C. Zolper, R.J. Shul, and F. Ren, J. Appl. Phys. 86, 683–691 (1999).

    Article  Google Scholar 

  6. P. Neudeck, R. Okojie, and L. Chen, Proc. IEEE 90, 1065–1076 (2002).

    Article  Google Scholar 

  7. L.A. Navarro, X. Perpiñà, M. Vellvehi, and X. Jordà, Ingenieria Mecanica Technologia Y Desarollo 4, 97–102 (2012).

    Google Scholar 

  8. C. Huang, M.F. Becker, J.W. Keto, and D. Kovara, J. Appl. Phys. 102, 054308 (2007).

    Article  Google Scholar 

  9. T. Wang, X. Chen, G.Q. Lu, and G.Y. Lei, J. ElecTron. Mater. 36, 1333–1340 (2007).

    Article  Google Scholar 

  10. M. Jakubowsk, M. Jarosz, K. Kiełbasinski, and A. MłoZniak, Microelectron. Reliab. 51, 1157–1282 (2011).

    Article  Google Scholar 

  11. S. Joo and D. F. Baldwin, Electron. Compon. Technol. Conf. 1417–1423 (2008).

  12. D.R. Lide, CRC Hand Book of Chemistry and Physics, 79th ed. (Boca Raton: CRC Press, 1999).

    Google Scholar 

  13. M. Tobita, Y. Yasuda, E. Ide, J. Ushio, and T. Morita, J. Nanopart. Res. 12, 2135–2144 (2010).

    Article  Google Scholar 

  14. A.J. Murray, P. Jaroenapibal, and B. Koene, Mater. Res. Soc. Symp. Proc. 942, 39–44 (2006).

    Article  Google Scholar 

  15. G-Q. Lu, J.N. Calata, and G. Lei, IEEE 8th International Conference on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems, (EuroSime, 2007), pp. 609–613.

  16. J. Guofeng Bai and G.-Q. Lu, IEEE Trans. Device Mater. Reliab. 6, 436–441 (2006).

    Article  Google Scholar 

  17. Y. Mei, D. Ibitayo, X. Chen, S. Luo, and G-Q. Lu, IMAPS International Conference and Exhibition on High Temperature Electronics (HITEC, 2010).

  18. P. Ning, (Ph.D. thesis at the faculty of the Virginia Polytechnic, 2010).

  19. J.R. Groza, Nanostructured Materials: Processing, Properties and Potential Applications, ed. C.C. Koch (Norwich: Noyes Publication, 2002),

    Google Scholar 

  20. J. Yan, G. Zou, A. Wu, J. Ren, J. Yan, A. Huc, and Y. Zhoua, Scripta Mater. 66, 582–585 (2012).

    Article  Google Scholar 

  21. T.G. Lei, J. Calata, G.-Q. Lu, X. Chen, and S. Luo, IEEE Trans. Compon. Packag. Technol. 33, 98–104 (2010).

    Article  Google Scholar 

  22. M. Knoerr and A. Schletz, International Conference on Integrated Power Electronics CIPS, (Nurenberg Gremany, 2010).

  23. E. Ide, S. Angata, A. Hirose, and K.F. Kobayashi, Acta Mater. 53, 2385–2393 (2005).

    Article  Google Scholar 

  24. K.S. Siow, J. Alloy. Compd. 514, 6–19 (2012).

    Article  Google Scholar 

  25. Z. Zhang and G.-Q. Lu, IEEE Trans. Electron. Packag. Manuf. 25, 3–10 (2002).

    Article  Google Scholar 

  26. E.A. Holm, J.D. Puskar, M. Reece, V. Tikare, G.C. Cardona, and L.N. Brewer, Nanocrystal Enabled Solid State Bonding, Report SAND2010-7013, (Sandia National Laboratories, 2010).

  27. Y. Morisada, T. Nagaoka, M. Fukusumi, Y. Kashiwagi, M. Yamamoto, and M. Nakamoto, J. Electron. Mater. 39, 1283–1288 (2010).

    Article  Google Scholar 

  28. G. Zou, J. Yan, F. Mu, A. Wu, J. Ren, A. Hu, and Y. Norman Zhou, Open Surf. Sci. J. 3, 70–75 (2011).

    Article  Google Scholar 

  29. J.G. Bai, T.G. Lei, J.N. Calata, and G.-Q. Lu, J. Mater. Res. 22, 3494–3500 (2007).

    Article  Google Scholar 

  30. M. Knoer, A. Schletz, S. Oertel, and M. Jank, Proceeding of the World Congress on Particle Technology WCPT6, (2010).

  31. H. Ogura, M. Maruyama, R. Matsubayashi, T. Ogawa, S. Nakamura, T. Komatsu, H. Nagasawa, A. Ichimura, and S. Isoda, J. Electron. Mater. 39, 1233–1240 (2010).

    Article  Google Scholar 

  32. K. Qi, X. Chen, and G.Q. Lu, Polym. Eng. Sci. 20, 29–36 (2008).

    Google Scholar 

  33. P. Panaccionel, T. Wang, X. Chen, S. Luo, and G-Q. Lu, Presented at the 6th International Conference and Exhibition on Device Packaging, (Arizona, USA, 2010).

  34. Y. Mei, Y. Cao, G. Chen, X. Li, G.-Q. Lu, and X. Chen, IEEE Trans. Device Mater. Reliab. 13, 258–265 (2013).

    Article  Google Scholar 

  35. N. Heuck, S. Muller, G. Palm, A. Bakin, and A. Waag, IMAPS International Conference and Exhibition on High Temperature Electronics (HITEC), (2010).

  36. G. Chen, Y. Cao, Y. Mei, D. Han, G.-Q. Lu, and X. Chen, IEEE Trans. Compon. Packag. Manuf. Technol. 2, 1759–1767 (2012).

  37. S. Chul Joo, (Ph.D. thesis, Georgia Institute of Technology, 2009).

  38. P. Ning, G. Lei, F. Wang, G.-Q. Lu, K. Ngo, and K. Rajashekara, IEEE Trans. Power Electron. 25, 16–23 (2010).

    Article  Google Scholar 

  39. M. Trunov and M. Schoenitz, Combust. Flame 140, 310–318 (2005).

    Article  Google Scholar 

  40. H.L. Wang and M.H. Hon, Ceram. Int. 25, 267–271 (1999).

    Article  Google Scholar 

  41. X. Li, X. Chen, D. Yu, and G-Q. Lu, 11th International Conference on Electronic Packaging Technology & High Density Packaging (2010).

  42. J. Li, (MSc thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 2010).

  43. G. Q. Lu, Nanosilver Paste: An Enabling Nanomaterial for Low Temperature Joining of Power Device. The Applied Power Electronic Conference (APEC, Fort Worth TX, 2011).

  44. D. Yu, X. Chen, G. Chen, G. Lu, and Z. Wang, Mater. Des. 30, 4574–4579 (2009).

    Article  Google Scholar 

  45. X. Chen, R. Li, K. Qi, and G.Q. Lu, J. Electron. Mater. 37, 1574–1579 (2008).

    Article  Google Scholar 

  46. J.G. Bai, Z.Z. Zhang, J.N. Calata, and G.Q. Lu, IEEE Trans. Compon. Packag. Technol. 29, 589–593 (2006).

    Article  Google Scholar 

  47. A. Hornung, Proceedings of the Electronic Components Conference, (1968), pp. 250–255.

  48. G.J. Kahan, IEEE Trans. Electron. Insul. EI-10, 86–94 (1975).

    Article  Google Scholar 

  49. J. J. Gagne, IEEE Transactions on Components, Hybrids, and Manufacturing Technology, vol. CHMT-5, (1982).

  50. Y. Mei, G.-Q. Lu, X. Chen, S. Luo, and D. Ibitayo, IEEE Trans. Device Mater. Reliab. 11, 316–322 (2011).

    Article  Google Scholar 

  51. D.R. Gaskell, Introduction to the Thermodynamics of Materials, 4th ed. (New York: Taylor & Francis, 2003).

    Google Scholar 

  52. P. E. Henson, (Master thesis, Auburn university, Alabama, 2010).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Khazaka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khazaka, R., Mendizabal, L. & Henry, D. Review on Joint Shear Strength of Nano-Silver Paste and Its Long-Term High Temperature Reliability. J. Electron. Mater. 43, 2459–2466 (2014). https://doi.org/10.1007/s11664-014-3202-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3202-6

Keywords

Navigation