Skip to main content
Log in

Fabrication of a sensitive sensor for determination of xanthine in the presence of uric acid and ascorbic acid by modifying a carbon paste sensor with Fe3O4@Au core–shell and an ionic liquid

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

In clinical applications, food, and human metabolism, biological substances including Xanthine (XA), Ascorbic acid (AA), and Uric acid (UA) play essential functions. Finding a technique to identify these compounds without electrochemical interference is critical since they are found in biological fluids and have comparable standard potential values. Herein, Fe3O4@Au core–shell was synthesized and characterized by using EDS analysis, transmission electron microscopy, X-Ray diffraction, and vibrating sample magnetometer. An electrochemical sensor based on Fe3O4@Au/NPs-ionic liquid (IL) (1-n butyl-3methylimidazolium-hexafluoro phosphate) was developed to detect xanthine. Various electrochemical methods including cyclic voltammetry, square wave voltammetry, and chronoamperometry were used to assess the behavior of XA, AA, and UA on the proposed modified electrode. The linear range was calculated to be 0.8–450 µM, and the detection limit of the modified electrode was obtained as 0.4 μM. The developed sensor was also successfully used to simultaneously detect XA in the presence of UA and AA. Finally, the application of the proposed sensor in the measurement of XA was investigated in food samples such as coca-cola, orange juice, and tuna fish using a standard addition method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M. Al Sharabati, R. Abokwiek, A. Al-Othman, M. Tawalbeh, C. Karaman, Y. Orooji, F. Karimi, Biodegradable polymers and their nano-composites for the removal of endocrine-disrupting chemicals (EDCs) from wastewater: a review. Environ. Res. 202, 111694 (2021)

    CAS  PubMed  Google Scholar 

  2. O. Karaman, H. Özdogan, Y.A. Üncü, C. Karaman, A.G. Tanır, Investigation of the effects of different composite materials on neutron contamination caused by medical LINAC/Untersuchung der Auswirkungen verschiedener Verbundmaterialien auf die Neutronenkontamination durch medizinische LINAC. Kerntechnik 85(5), 401–407 (2020)

    Google Scholar 

  3. A. Aykan, O. Karaman, C. Karaman, N. Atar, M.L. Yola, A comparative study of CO catalytic oxidation on the single vacancy and di-vacancy graphene supported single-atom iridium catalysts: A DFT analysis. Surf. Interfaces 25, 101293 (2021)

    Google Scholar 

  4. C. Karaman, Boosting effect of nitrogen and phosphorous co-doped three-dimensional graphene architecture: highly selective electrocatalysts for carbon dioxide electroreduction to formate. Top. Catal. (2021). https://doi.org/10.1007/s11244-021-01500-6

    Article  Google Scholar 

  5. M. Goodarzi, I. Tlili, H. Moria, T.A. Alkanhal, R. Ellahi, A.E. Anqi, M.R. Safaei, Boiling heat transfer characteristics of graphene oxide nanoplatelets nano-suspensions of water-perfluorohexane (C6F14) and water-n-pentane. Alex. Eng. J. 59(6), 4511–4521 (2020)

    Google Scholar 

  6. N. Anjum, J.-H. He, Analysis of nonlinear vibration of nano/microelectromechanical system switch induced by electromagnetic force under zero initial conditions. Alex. Eng. J. 59(6), 4343–4352 (2020)

    Google Scholar 

  7. C. Karaman, O. Karaman, N. Atar, M.L. Yola, Sustainable electrode material for high-energy supercapacitor: biomass-derived graphene-like porous carbon with three-dimensional hierarchically ordered ion highways. Phys. Chem. Chem. Phys. 23(22), 12807–12821 (2021)

    CAS  PubMed  Google Scholar 

  8. C. Karaman, Z. Aktaş, E. Bayram, O. Karaman, Ç. Kızıl, Correlation between the molecular structure of reducing agent and ph of graphene oxide dispersion on the formation of 3D-graphene networks. ECS J. Solid State Sci. Technol. 9(7), 071003 (2020)

    CAS  Google Scholar 

  9. F. Karimi, A. Ayati, B. Tanhaei, A.L. Sanati, S. Afshar, A. Kardan, Z. Dabirifar, C. Karaman, Removal of metal ions using a new magnetic chitosan nano-bio-adsorbent; a powerful approach in water treatment. Environ. Res. 203, 111753 (2022)

    CAS  PubMed  Google Scholar 

  10. Y. Wei, B. Han, X. Hu, Y. Lin, X. Wang, X. Deng, Synthesis of Fe3O4 nanoparticles and their magnetic properties. Proc. Eng. 27, 632–637 (2012)

    CAS  Google Scholar 

  11. M. Baghayeri, E.N. Zare, M.M. Lakouraj, A simple hydrogen peroxide biosensor based on a novel electro-magnetic poly (p-phenylenediamine)@ Fe3O4 nanocomposite. Biosens. Bioelectron. 55, 259–265 (2014)

    CAS  PubMed  Google Scholar 

  12. U. Khaled, A. Beroual, Lightning impulse breakdown voltage of synthetic and natural ester liquids-based Fe3O4, Al2O3 and SiO2 nanofluids. Alex. Eng. J. 59(5), 3709–3713 (2020)

    Google Scholar 

  13. J.-D. Qiu, M. Xiong, R.-P. Liang, H.-P. Peng, F. Liu, Synthesis and characterization of ferrocene modified Fe3O4@ Au magnetic nanoparticles and its application. Biosens. Bioelectron. 24(8), 2649–2653 (2009)

    CAS  PubMed  Google Scholar 

  14. A. Youssef, M. Abdel-Aziz, E. El-Sayed, M. Abdel-Aziz, A. Abd El-Hakim, S. Kamel, G. Turky, Morphological, electrical & antibacterial properties of trilayered Cs/PAA/PPy bionanocomposites hydrogel based on Fe3O4-NPs. Carbohydr. Polym. 196, 483–493 (2018)

    CAS  PubMed  Google Scholar 

  15. Y.-M. Hao, S.-Y. Lou, S.-M. Zhou, R.-J. Yuan, G.-Y. Zhu, N. Li, Structural, optical, and magnetic studies of manganese-doped zinc oxide hierarchical microspheres by self-assembly of nanoparticles. Nanoscale Res. Lett. 7(1), 1–9 (2012)

    Google Scholar 

  16. S. Nehru, S. Sakthinathan, P. Tamizhdurai, T.-W. Chiu, K. Shanthi, Reduced graphene oxide/multiwalled carbon nanotube composite decorated with Fe3O4 magnetic nanoparticles for electrochemical determination of hydrazine in environmental water. J. Nanosci. Nanotechnol. 20(5), 3148–3156 (2020)

    CAS  PubMed  Google Scholar 

  17. S.V. Salihov, Y.A. Ivanenkov, S.P. Krechetov, M.S. Veselov, N.V. Sviridenkova, A.G. Savchenko, N.L. Klyachko, Y.I. Golovin, N.V. Chufarova, E.K. Beloglazkina, Recent advances in the synthesis of Fe3O4@ AU core/shell nanoparticles. J. Magn. Magn. Mater. 394, 173–178 (2015)

    CAS  Google Scholar 

  18. Z. Wang, Q. Lei, Z. Wang, H. Yuan, L. Cao, N. Qin, Z. Lu, J. Xiao, J. Liu, In-situ synthesis of free-standing FeNi-oxyhydroxide nanosheets as a highly efficient electrocatalyst for water oxidation. Chem. Eng. J. 395, 125180 (2020)

    CAS  Google Scholar 

  19. H. Mouaziz, R. Veyret, A. Theretz, F. Ginot, A. Elaissari, Aminodextran containing magnetite nanoparticles for molecular biology applications: preparation and evaluation. J. Biomed. Nanotechnol. 5(2), 172–181 (2009)

    CAS  PubMed  Google Scholar 

  20. Y. Yang, J. Liu, X. Zhou, A CRISPR-based and Post-amplification coupled SARS-CoV-2 detection with a portable evanescent wave biosensor. Biosensors Bioelectron. 113418 (2021)

  21. C. Jiang, L. Xiang, S. Miao, L. Shi, D. Xie, J. Yan, Z. Zheng, X. Zhang, Y. Tang, Flexible interface design for stress regulation of a silicon anode toward highly stable dual-ion batteries. Adv. Mater. 32(17), 1908470 (2020)

    CAS  Google Scholar 

  22. X. Zhang, Y. Tang, F. Zhang, C.S. Lee, A novel aluminum–graphite dual-ion battery. Adv. Energy Mater. 6(11), 1502588 (2016)

    Google Scholar 

  23. W. Tai, L. He, X. Zhang, J. Pu, D. Voronin, S. Jiang, Y. Zhou, L. Du, Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell. Mol. Immunol. 17(6), 613–620 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  24. I. Vedernikova, Magnetic nanoparticles: advantages of using, methods for preparation, characterization, application in pharmacy. Rev. J. Chem. 5(3), 256–280 (2015)

    CAS  Google Scholar 

  25. M. Barani, M. Mukhtar, A. Rahdar, G. Sargazi, A. Thysiadou, G.Z. Kyzas, Progress in the application of nanoparticles and graphene as drug carriers and on the diagnosis of brain infections. Molecules 26(1), 186 (2021)

    CAS  PubMed Central  Google Scholar 

  26. M. Bilal, M. Barani, F. Sabir, A. Rahdar, G.Z. Kyzas, Nanomaterials for the treatment and diagnosis of Alzheimer's disease: an overview. NanoImpact 100251 (2020)

  27. M. Mukhtar, M. Bilal, A. Rahdar, M. Barani, R. Arshad, T. Behl, C. Brisc, F. Banica, S. Bungau, Nanomaterials for diagnosis and treatment of brain cancer: recent updates. Chemosensors 8(4), 117 (2020)

    CAS  Google Scholar 

  28. H. Cheng, T. Li, X. Li, J. Feng, T. Tang, D. Qin, Facile synthesis of Co9S8 nanocages as an electrochemical sensor for luteolin detection. J. Electrochem. Soc. 168(8), 087504 (2021)

    CAS  Google Scholar 

  29. M. Barani, F. Sabir, A. Rahdar, R. Arshad, G.Z. Kyzas, Nanotreatment and nanodiagnosis of prostate cancer: recent updates. Nanomaterials 10(9), 1696 (2020)

    CAS  PubMed Central  Google Scholar 

  30. J. Li, Y. Hu, J. Yang, P. Wei, W. Sun, M. Shen, G. Zhang, X. Shi, Hyaluronic acid-modified Fe3O4@ Au core/shell nanostars for multimodal imaging and photothermal therapy of tumors. Biomaterials 38, 10–21 (2015)

    CAS  PubMed  Google Scholar 

  31. Y. Ma, W. Li, E.C. Cho, Z. Li, T. Yu, J. Zeng, Z. Xie, Y. Xia, Au@ Ag core− shell nanocubes with finely tuned and well-controlled sizes, shell thicknesses, and optical properties. ACS Nano 4(11), 6725–6734 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  32. M. Peng, G. Bi, C. Cai, G. Guo, H. Wu, Z. Xu, Enhanced photoluminescence properties of bismuth sulfide nanocrystals with core-shell Ag@ SiO 2. Opt. Lett. 41(7), 1466–1469 (2016)

    CAS  PubMed  Google Scholar 

  33. Y.-S. Kim, P. Rai, Y.-T. Yu, Microwave assisted hydrothermal synthesis of Au@ TiO2 core–shell nanoparticles for high temperature CO sensing applications. Sens. Actuators, B Chem. 186, 633–639 (2013)

    CAS  Google Scholar 

  34. Y. Sun, J. Fei, K. Wu, S. Hu, Simultaneous electrochemical determination of xanthine and uric acid at a nanoparticle film electrode. Anal. Bioanal. Chem. 375(4), 544–549 (2003)

    CAS  PubMed  Google Scholar 

  35. J. Ahlawat, A. Joon, V. Aggarwal, R. Jaiwal, C.S. Pundir, An improved amperometric determination of xanthine with xanthine oxidase nanoparticles for testing of fish meat freshness. Sens. Bio-Sens. Res. 100437 (2021)

  36. Y. Wang, L.-L. Tong, Electrochemical sensor for simultaneous determination of uric acid, xanthine and hypoxanthine based on poly (bromocresol purple) modified glassy carbon electrode. Sens. Actuators, B Chem. 150(1), 43–49 (2010)

    CAS  Google Scholar 

  37. C. Hong, L. Guan, L. Huang, X. Hong, Z. Huang, Colorimetric determination of xanthine with xanthine oxidase and WSe 2 nanosheets as a peroxidase mimic. New J. Chem. (2021)

  38. N. Spãtaru, B.V. Sarada, D.A. Tryk, A. Fujishima, Anodic voltammetry of xanthine, theophylline, theobromine and caffeine at conductive diamond electrodes and its analytical application. Electroanal. Int. J. Devoted Fundam. Pract. Aspects Electroanal. 14(11), 721–728 (2002)

    Google Scholar 

  39. M. Khan, M. Ahommed, M. Daizy, Detection of xanthine in food samples with an electrochemical biosensor based on PEDOT: PSS and functionalized gold nanoparticles. RSC Adv. 10(59), 36147–36154 (2020)

    CAS  Google Scholar 

  40. Y. Wang, H. Zhao, H. Song, J. Dong, J. Xu, Monodispersed gold nanoparticles entrapped in ordered mesoporous carbon/silica nanocomposites as xanthine oxidase mimic for electrochemical sensing of xanthine. Microchim. Acta 187(10), 1–9 (2020)

    Google Scholar 

  41. C. Xue, J. You, H. Zhang, S. Xiong, T. Yin, Q. Huang, Capacity of myofibrillar protein to adsorb characteristic fishy-odor compounds: Effects of concentration, temperature, ionic strength, pH and yeast glucan addition. Food Chem. 130304 (2021)

  42. M. Amiri-Aref, J.B. Raoof, R. Ojani, A highly sensitive electrochemical sensor for simultaneous voltammetric determination of noradrenaline, acetaminophen, xanthine and caffeine based on a flavonoid nanostructured modified glassy carbon electrode. Sens. Actuators, B Chem. 192, 634–641 (2014)

    CAS  Google Scholar 

  43. M. Heinig, R.J. Johnson, Role of uric acid in hypertension, renal disease, and metabolic syndrome. Clevel. Clin. J. Med. 73(12), 1059 (2006)

    Google Scholar 

  44. D. Sun, Y. Zhang, F. Wang, K. Wu, J. Chen, Y. Zhou, Electrochemical sensor for simultaneous detection of ascorbic acid, uric acid and xanthine based on the surface enhancement effect of mesoporous silica. Sens. Actuators, B Chem. 141(2), 641–645 (2009)

    CAS  Google Scholar 

  45. G.-C. Yen, P.-D. Duh, H.-L. Tsai, Antioxidant and pro-oxidant properties of ascorbic acid and gallic acid. Food Chem. 79(3), 307–313 (2002)

    CAS  Google Scholar 

  46. P. Kalimuthu, S.A. John, Simultaneous determination of ascorbic acid, dopamine, uric acid and xanthine using a nanostructured polymer film modified electrode. Talanta 80(5), 1686–1691 (2010)

    CAS  PubMed  Google Scholar 

  47. H. Karimi-Maleh, F. Karimi, L. Fu, A.L. Sanati, M. Alizadeh, C. Karaman, Y. Orooji, Cyanazine herbicide monitoring as a hazardous substance by a DNA nanostructure biosensor. J. Hazard. Mater. 423, 127058 (2022)

    CAS  PubMed  Google Scholar 

  48. C. Karaman, O. Karaman, B.B. Yola, İ Ulker, N. Atar, M.L. Yola, A novel electrochemical Aflatoxin B1 immunosensor based on gold nanoparticles decorated porous graphene nanoribbon and Ag nanocubes incorporated MoS2 nanosheets. New J. Chem. 45, 11222–11233 (2021)

    CAS  Google Scholar 

  49. H. Medetalibeyoğlu, M. Beytur, S. Manap, C. Karaman, F. Kardaş, O. Akyıldırım, G. Kotan, H. Yüksek, N. Atar, M.L. Yola, Molecular imprinted sensor including Au nanoparticles/polyoxometalate/two-dimensional hexagonal boron nitride nanocomposite for diazinon recognition. ECS J. Solid State Sci. Technol. 9(10), 101006 (2020)

    Google Scholar 

  50. M. Baghayeri, H. Veisi, H. Veisi, B. Maleki, H. Karimi-Maleh, H. Beitollahi, Multi-walled carbon nanotubes decorated with palladium nanoparticles as a novel platform for electrocatalytic sensing applications. RSC Adv. 4(91), 49595–49604 (2014)

    CAS  Google Scholar 

  51. A.A. Ensafi, H. Karimi-Maleh, Voltammetric determination of isoproterenol using multiwall carbon nanotubes-ionic liquid paste electrode. Drug Test. Anal. 3(5), 325–330 (2011)

    CAS  PubMed  Google Scholar 

  52. A.A. Ensafi, S. Dadkhah-Tehrani, H. Karimi-Maleh, A voltammetric sensor for the simultaneous determination of L-cysteine and tryptophan using a p-aminophenol-multiwall carbon nanotube paste electrode. Anal. Sci. 27(4), 409–409 (2011)

    CAS  PubMed  Google Scholar 

  53. H. Karimi-Maleh, Y. Orooji, F. Karimi, M. Alizadeh, M. Baghayeri, J. Rouhi, S. Tajik, H. Beitollahi, S. Agarwal, V.K. Gupta, A critical review on the use of potentiometric based biosensors for biomarkers detection. Biosens. Bioelectron. 184, 113252 (2021)

    CAS  PubMed  Google Scholar 

  54. J.-D. Qiu, H.-P. Peng, R.-P. Liang, X.-H. Xia, Facile preparation of magnetic core–shell Fe3O4@ Au nanoparticle/myoglobin biofilm for direct electrochemistry. Biosens. Bioelectron. 25(6), 1447–1453 (2010)

    CAS  PubMed  Google Scholar 

  55. F. Cui, X. Zhang, Electrochemical sensor for epinephrine based on a glassy carbon electrode modified with graphene/gold nanocomposites. J. Electroanal. Chem. 669, 35–41 (2012)

    CAS  Google Scholar 

  56. A.A. Ensafi, E. Khoddami, B. Rezaei, H. Karimi-Maleh, p-Aminophenol–multiwall carbon nanotubes–TiO2 electrode as a sensor for simultaneous determination of penicillamine and uric acid. Colloids Surf., B 81(1), 42–49 (2010)

    CAS  Google Scholar 

  57. J. Raoof, R. Ojani, H. Karimi-Maleh, Electrocatalytic oxidation of glutathione at carbon paste electrode modified with 2, 7-bis (ferrocenyl ethyl) fluoren-9-one: application as a voltammetric sensor. J. Appl. Electrochem. 39(8), 1169–1175 (2009)

    CAS  Google Scholar 

  58. H. Karimi-Maleh, M. Keyvanfard, K. Alizad, M. Fouladgar, H. Beitollahi, A. Mokhtari, F. Gholami-Orimi, Voltammetric determination of N-actylcysteine using modified multiwall carbon nanotubes paste electrode. Int. J. Electrochem. Sci 6(12), 6141–6150 (2011)

    CAS  Google Scholar 

  59. A.A. Ensafi, H. Karimi-Maleh, S. Mallakpour, N-(3, 4-Dihydroxyphenethyl)-3, 5-dinitrobenzamide-modified multiwall carbon nanotubes paste electrode as a novel sensor for simultaneous determination of penicillamine, uric acid, and tryptophan. Electroanalysis 23(6), 1478–1487 (2011)

    CAS  Google Scholar 

  60. E. Mirmomtaz, A. Asghar Ensafi, H. Karimi-Maleh, Electrocatalytic determination of 6-tioguanine at ap-aminophenol modified carbon paste electrode. Electroanal. Int. J.. Devoted Fundam. Pract. Aspects Electroanal. 20(18), 1973–1979 (2008)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iran Sheikhshoaie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roostaee, M., Sheikhshoaie, I. Fabrication of a sensitive sensor for determination of xanthine in the presence of uric acid and ascorbic acid by modifying a carbon paste sensor with Fe3O4@Au core–shell and an ionic liquid. Food Measure 16, 731–739 (2022). https://doi.org/10.1007/s11694-021-01200-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-021-01200-5

Keywords

Navigation