Skip to main content
Log in

A novel potentiometric screen-printed electrode based on crown ethers/nano manganese oxide/Nafion composite for trace level determination of copper ion in biological fluids

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Copper levels in biological fluids are associated with Wilson's, Alzheimer's, Menke's, and Parkinson's diseases, making them good biochemical markers for these diseases. This study introduces a miniaturized screen-printed electrode (SPE) for the potentiometric determination of copper(II) in some biological fluids. Manganese(III) oxide nanoparticles (Mn2O3-NPs), dispersed in Nafion, are drop-casted onto a graphite/PET substrate, serving as the ion-to-electron transducer material. The solid-contact material is then covered by a selective polyvinyl chloride (PVC) membrane incorporated with 18-crown-6 as a neutral ion carrier for the selective determination of copper(II) ions. The proposed electrode exhibits a Nernstian response with a slope of 30.2 ± 0.3 mV/decade (R2 = 0.999) over the linear concentration range 5.2 × 10–9 – 6.2 × 10–3 mol/l and a detection limit of 1.1 × 10–9 mol/l (69.9 ng/l). Short-term potential stability is evaluated using constant current chronopotentiometry (CP) and electrochemical impedance spectroscopy (EIS). A significant improvement in the electrode capacitance (91.5 μF) is displayed due to the use of Mn2O3-NPs as a solid contact. The presence of Nafion, with its high hydrophobicity properties, eliminates the formation of the thin water layer, facilitating the ion-to-electron transduction between the sensing membrane and the conducting substrate. Additionally, it enhances the adhesion of the polymeric sensing membrane to the solid-contact material, preventing membrane delamination and increasing the electrode's lifespan. The high selectivity, sensitivity, and potential stability of the proposed miniaturized electrode suggests its use for the determination of copper(II) ions in human blood serum and milk samples. The results obtained agree fairly well with data obtained by flameless atomic absorption spectrometry.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Gismera MJ, Hueso D, Procopio JR, Sevilla MT (2004) Ion-selective carbon paste electrode based on tetraethyl thiuram disulfide for copper (II) and mercury (II). Anal Chim Acta 524:347–353

    Article  CAS  Google Scholar 

  2. Barceloux DG (1999) Copper. J Toxicol 37:217–230

    CAS  Google Scholar 

  3. Litwin T, Antos A, Bembenek J, Przybyłkowski A, Kurkowska-Jastrzębska I, Skowrońska M, Członkowska A (2023) Copper deficiency as Wilson’s disease overtreatment: a systematic review. Diagnostics 13:2424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tümer Z, Møller LB (2010) Menkes disease. Eur J Hum Genet 18:511–518

    Article  PubMed  Google Scholar 

  5. Bagheri S, Squitti R, Haertlé T, Siotto M, Saboury AA (2018) Role of copper in the onset of Alzheimer’s disease compared to other metals. Frontiers in Aging Neuroscience 9:446

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bisaglia M, Bubacco L (2020) Copper Ions and Parkinson’s disease: why is homeostasis so relevant? Biomolecules 10:195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Styczeń K, Sowa-Kućma M, Siwek M, Dudek D, Reczyński W, Misztak P, Szewczyk B, Topór-Mądry R, Opoka W, Nowak G (2016) Study of the serum copper levels in patients with major depressive disorder. Biol Trace Elem Res 174:287–293

    Article  PubMed  PubMed Central  Google Scholar 

  8. Panahi HA, Karimi M, Moniri E, Soudi H (2008) Development of a sensitive spectrophotometeric method for determination of copper. Afr J Pure Appl Chem 2:096–099

    Google Scholar 

  9. Kaur V, Malik AK (2007) Development of solid phase microextraction-high performance liquid chromatographic method for the determination of copper (II) in environmental samples using morpholine-4-carbodithioate, Annali di Chimica: Journal of Analytical, Environmental and Cultural Heritage. Chemistry 97:1279–1290

    CAS  Google Scholar 

  10. Škrlíková J, Andruch V, Balogh IS, Kocúrová L, Nagy L, Bazeľ Y (2011) A novel, environmentally friendly dispersive liquid–liquid microextraction procedure for the determination of copper. Microchem J 99:40–45

    Article  Google Scholar 

  11. Janegitz BC, Marcolino-Junior LH, Campana-Filho SP, Faria RC, Fatibello-Filho O (2009) Anodic stripping voltammetric determination of copper (II) using a functionalized carbon nanotubes paste electrode modified with crosslinked chitosan. Sens Actuators, B Chem 142:260–266

    Article  CAS  Google Scholar 

  12. Hassan SSM, Elnemma EM, Mohamed AHK (2005) Novel potentiometric copper(II) selective nembrane sensors based on cyclic tetrapeptide derivatives as neutral ionophores. Talanta 66:1034–1041

    Article  CAS  PubMed  Google Scholar 

  13. Ghaedi M, Ahmadi F, Shokrollahi A (2007) Simultaneous preconcentration and determination of copper, nickel, cobalt and lead ions content by flame atomic absorption spectrometry. J Hazard Mater 142:272–278

    Article  CAS  PubMed  Google Scholar 

  14. Ammann AA (2002) Speciation of heavy metals in environmental water by ion chromatography coupled to ICP–MS. Anal Bioanal Chem 372:448–452

    Article  CAS  PubMed  Google Scholar 

  15. Koryta J, Stulík, K (1983) Ion-Selective Electrodes, Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511897610

  16. Shao Y, Ying Y, Ping J (2020) Recent advances in solid-contact ion-selective electrodes: functional materials, transduction mechanisms, and development trends, Chemical Society Reviews, Issue 13. https://doi.org/10.1039/C9CS00587K

  17. Mahajan R, Kaur I, Lobana T (2003) A mercury (II) ion-selective electrode based on neutral salicylaldehyde thiosemicarbazone. Talanta 59:101–105

    Article  CAS  PubMed  Google Scholar 

  18. Hassan SSM, Kamel AH, Fathy MA (2023) All-solid-state paper-based potentiometric combined sensor modified with reduced graphene oxide (rGO) and molecularly imprinted polymer for monitoring losartan drug in pharmaceuticals and biological samples. Talanta 253:123907

    Article  CAS  PubMed  Google Scholar 

  19. Jiang Z, Xi X, Qiu S, Wu D, Tang W, Guo X, Su Y, Liu R (2019) Ordered mesoporous carbon sphere-based solid-contact ion-selective electrodes. J Mater Sci 54:13674–13684

    Article  CAS  Google Scholar 

  20. Hassan SSM, Kamel AH, Amr AE-GE, Abdelwahab Fathy M, Al-Omar MA (2020) Paper strip and ceramic potentiometric platforms modified with nano-sized polyaniline (PANi) for static and hydrodynamic monitoring of chromium in industrial samples. Molecules 25:629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hassan SSM, Kamel AH, Fathy MA (2022) A novel screen-printed potentiometric electrode with carbon nanotubes/polyaniline transducer and molecularly imprinted polymer for the determination of nalbuphine in pharmaceuticals and biological fluids. Anal Chim Acta 1227:340239

    Article  CAS  PubMed  Google Scholar 

  22. Ibupoto ZH, Khun K, Willander M (2013) A selective iodide ion sensor electrode based on functionalized ZnO nanotubes. Sensors 13:1984–1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Khun K, Ibupoto Z, Willander M (2013) Urea assisted synthesis of flower like CuO nanostructures and their chemical sensing application for the determination of cadmium ions. Electroanalysis 25:1425–1432

    Article  CAS  Google Scholar 

  24. Zeng X, Qin W (2017) A solid-contact potassium-selective electrode with MoO2 microspheres as ion-to-electron transducer. Anal Chim Acta 982:72–77

    Article  CAS  PubMed  Google Scholar 

  25. Yang CQSC, Zhang YQ, Qu Y (2019) Chin J Anal Chem 47:765–771

    Article  CAS  Google Scholar 

  26. Lenar N, Paczosa-Bator B, Piech R (2019) Ruthenium dioxide as high-capacitance solid-contact layer in K+-selective electrodes based on polymer membrane. J Electrochem Soc 166:B1470

    Article  CAS  Google Scholar 

  27. Lenar N, Paczosa-Bator B, Piech R (2019) Ruthenium dioxide nanoparticles as a high-capacity transducer in solid-contact polymer membrane-based pH-selective electrodes. Mikrochim Acta 186:1–11

    Article  Google Scholar 

  28. Lindner E, Gyurcsányi RE (2009) Quality control criteria for solid-contact, solvent polymeric membrane ion-selective electrodes. J Solid State Electrochem 13:51–68

    Article  CAS  Google Scholar 

  29. Sadeq ZS (2019) Structural and optical study of Mn2O3 nanoparticles and its antibacterial activity. Sylwan 161:76–84

    Google Scholar 

  30. Faridbod F, Bahman M (2020) Determination of copper content of human blood plasma by an ion selective electrode based on a new copper-selectophore, Analytical and Bioanalytical. Electrochemistry 12:881–892

    CAS  Google Scholar 

  31. Rashed MN, Mohamed AE, Aboelhassn MM (2021) Determination of heavy metals in preserving milk using microwave digestion and atomic absorption spectroscopy, Aswan University. J Environ Stud 2:290–301

    Google Scholar 

  32. Pedersen CJ (1967) Cyclic polyethers and their complexes with metal salts. J Am Chem Soc 89:7017–7036

    Article  CAS  Google Scholar 

  33. Izatt RM, Pawlak K, Bradshaw JS, Bruening RL (1991) Thermodynamic and kinetic data for macrocycle interactions with cations and anions. Chem Rev 91:1721–2085

    Article  CAS  Google Scholar 

  34. Sanad SG, Shimaa AH, Ali LI (2020) Theoretical and experimental salvation of nano copper sulfate interacted with 18-crown-6 in water. Iran J Chem Chem Eng 39:11–30

    Google Scholar 

  35. Park I-H, Park K-M, Lee SS (2010) Preparation and characterisation of divalent hard and soft metal (M= Ca Co, Cu, Zn, Cd, Hg and Pb) complexes of 1, 10-dithia-18-crown-6: structural versatility. Dalton Trans 39:9696–9704

    Article  CAS  PubMed  Google Scholar 

  36. Junquera E, Pasero A, Aicart E (2001) Electrochemical study of the chelation of Cu2+ cation by 18-crown-6-ether and hydroxybenzoic acids in aqueous solution. J Solution Chem 30:497–508

    Article  CAS  Google Scholar 

  37. Hussain I, Gillani R, Mckee V, Hussain H, Ali Z (2014) Synthesis, characterization and X-ray crystal structure of copper complex with 18-crown-6. Asian J Chem 26:3953

    Article  CAS  Google Scholar 

  38. Pugazhvadivu K, Ramachandran K, Tamilarasan K (2013) Synthesis and characterization of cobalt doped manganese oxide nanoparticles by chemical route. Phys Procedia 49:205–216

    Article  CAS  Google Scholar 

  39. Fathy MA, Kamel AH, Hassan SSM (2022) Novel magnetic nickel ferrite nanoparticles modified with poly (aniline-co-o-toluidine) for the removal of hazardous 2, 4-dichlorophenol pollutant from aqueous solutions. RSC Adv 12:7433–7445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Paul DK, Karan K (2014) Conductivity and wettability changes of ultrathin Nafion films subjected to thermal annealing and liquid water exposure. The J Phys Chem C 118:1828–1835

    Article  CAS  Google Scholar 

  41. Umezawa Y, Umezawa K, Sato H (1995) Selectivity coefficients for ion-selective electrodes: Recommended methods for reporting (Technical Report). Pure Appl Chem 67:507–518

    Article  Google Scholar 

  42. Bobacka J (1999) Potential stability of all-solid-state ion-selective electrodes using conducting polymers as ion-to-electron transducers. Anal Chem 71:4932–4937

    Article  CAS  PubMed  Google Scholar 

  43. Crespo GA, Macho S, Rius FX (2008) Ion-selective electrodes using carbon nanotubes as ion-to-electron transducers. Anal Chem 80:1316–1322

    Article  CAS  PubMed  Google Scholar 

  44. Fibbioli M, Morf WE, Badertscher M, de Rooij NF, Pretsch E (2000) Potential drifts of solid-contacted ion-selective electrodes due to zero-current ion fluxes through the sensor membrane. Electroanalysis 12:1286–1292

    Article  CAS  Google Scholar 

  45. Guo Y, Huang S-F, Mabuchi T, Tokumasu T (2023) Analysis of structural and water diffusional properties of ionomer thin film by coarse-grained molecular dynamics simulation. J Mol Liq 391:123190

    Article  CAS  Google Scholar 

  46. Hassan SSM, Kamel AH, Amr AE-GE, Abd-Rabboh HS, Al-Omar MA, Elsayed EA (2020) A new validated potentiometric method for sulfite assay in beverages using cobalt (II) phthalocyanine as a sensory recognition element. Molecules 25:3076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. US Food and Drug Administration (2015) Analytical procedures and methods validation for drugs and biologics: guidance for industry. US Food and Drug Administration, US Department of Health and Human Services, Silver Spring. https://scholar.google.com/scholar?hl=en&as_sdt=0%2C24&q=US+Food+and+Drug+Administration.+Analytical+Procedures+and+Methods+Validation+for+Drugs+and+Biologics%3A+Guidance+for+Industry.+Silver+Spring%2C

  48. de Oliveira Trinta V, de Carvalho Padilha P, Petronilho S, Santelli RE, Braz BF, Freire AS, Saunders C, da Rocha HF, Sanz-Medel A, Fernández-Sánchez ML (2020) Total metal content and chemical speciation analysis of iron, copper, zinc and iodine in human breast milk using high-performance liquid chromatography separation and inductively coupled plasma mass spectrometry detection. Food Chem 326:126978

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Saad S. M. Hassan or Mahmoud Abdelwahab Fathy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Cost-effective screen-printed potentiometric sensors for the trace-level determination of copper ions are developed.

• Nano manganese oxide/Nafion composite as a solid-contact material and 18-crown-6 as a sensing ionophore are used.

• Detailed characterization of the sensors and method validation are documented.

• Potentiometric copper assay in blood serum and caw milk.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 404 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, S.S.M., El-Shalakany, H.H., Fathy, M.A. et al. A novel potentiometric screen-printed electrode based on crown ethers/nano manganese oxide/Nafion composite for trace level determination of copper ion in biological fluids. Microchim Acta 191, 313 (2024). https://doi.org/10.1007/s00604-024-06394-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06394-1

Keywords

Navigation