Skip to main content

Advertisement

Log in

Boosting Effect of Nitrogen and Phosphorous Co-doped Three-Dimensional Graphene Architecture: Highly Selective Electrocatalysts for Carbon Dioxide Electroreduction to Formate

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Electrocatalytic CO2 reduction (ECR) is regarded as an alternative strategy for tackling the energy demand problem as well as environmental issues such as global warming. The development of highly selective and stable, environmentally friendly, energy-efficient, and cost-natural advanced electrocatalysts is critical to facilitating this kinetically slow process. Herein, it has been aimed to form hierarchically ordered electrochemically active sites on three-dimensional graphene architecture as well as get benefit from the synergistic effect of co-doping of nitrogen and phosphorous, and thereby boosting the CO2 conversion. Therefore, metal-free nitrogen and phosphorous co-doped three-dimensional graphene (N,P-3DGN) architecture has been fabricated via a facile, scalable one-step microwave-assisted hydrothermal production pathway. N,P-3DG possesses a higher electrochemical active area and electrical conductivity than N- or P-doped graphene structures, facilitating electron transfer from CO2 to its radical anion or other key intermediates. Therefore, as-fabricated N,P-3DG structure with hierarchically ordered three-dimensional ion highways offered high faradaic efficiency of 93.7% for formate production at − 1.3 V (vs. Ag/AgCl) at a reasonable overpotential of 0.5 V. The onset potential of N,P-3DG has been found to be − 0.96 V (vs. Ag/AgCl), which is more positive than that of the three-dimensional graphene structure (3DG) (− 1.53 V). The N,S-3DG electrocatalyst successfully hindered the hydrogen evolution reaction and demonstrated stable electrocatalytic activity towards ECR. The results showed that the unique structure and synergistic effect of co-doping N,P atoms with C atoms pointed in the direction of conversion CO2 to formate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. McCollum D, Bauer N, Calvin K, Kitous A, Riahi K (2014) Fossil resource and energy security dynamics in conventional and carbon-constrained worlds. Clim Change 123(3–4):413–426. https://doi.org/10.1007/s10584-013-0939-5

    Article  Google Scholar 

  2. Yu KMK, Curcic I, Gabriel J, Tsang SCE (2008) Recent advances in CO2 capture and utilization. ChemSusChem 1(11):893–899. https://doi.org/10.1002/cssc.200800169

    Article  CAS  PubMed  Google Scholar 

  3. von der Assen N, Jung J, Bardow A (2013) Life-cycle assessment of carbon dioxide capture and utilization: avoiding the pitfalls. Energy Environ Sci 6(9):2721–2734. https://doi.org/10.1039/c3ee41151f

    Article  CAS  Google Scholar 

  4. Kondratenko EV, Mul G, Baltrusaitis J, Larrazabal GO, Perez-Ramirez J (2013) Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy Environ Sci 6(11):3112–3135. https://doi.org/10.1039/c3ee41272e

    Article  CAS  Google Scholar 

  5. Kuang M, Guan AX, Gu ZX, Han P, Qian LP, Zheng GF (2019) Enhanced N-doping in mesoporous carbon for efficient electrocatalytic CO2 conversion. Nano Res 12(9):2324–2329. https://doi.org/10.1007/s12274-019-2396-6

    Article  CAS  Google Scholar 

  6. Porosoff MD, Yan BH, Chen JGG (2016) Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: challenges and opportunities. Energy Environ Sci 9(1):62–73. https://doi.org/10.1039/c5ee02657a

    Article  CAS  Google Scholar 

  7. Hu BX, Guild C, Suib SL (2013) Thermal, electrochemical, and photochemical conversion of CO2 to fuels and value-added products. J CO2 Util 1:18–27. https://doi.org/10.1016/j.jcou.2013.03.004

    Article  CAS  Google Scholar 

  8. Whipple DT, Kenis PJA (2010) Prospects of CO2 utilization via direct heterogeneous electrochemical reduction. J Phys Chem Lett 1(24):3451–3458. https://doi.org/10.1021/jz1012627

    Article  CAS  Google Scholar 

  9. Vasileff A, Zheng Y, Qiao SZ (2017) Carbon solving carbon’s problems: recent progress of nanostructured carbon-based catalysts for the electrochemical reduction of CO2. Adv Energy Mater. https://doi.org/10.1002/aenm.20170075

    Article  Google Scholar 

  10. Chai GL, Guo ZX (2016) Highly effective sites and selectivity of nitrogen-doped graphene/CNT catalysts for CO2 electrochemical reduction. Chem Sci 7(2):1268–1275. https://doi.org/10.1039/c5sc03695j

    Article  CAS  PubMed  Google Scholar 

  11. Varela AS, Ju W, Bagger A, Franco P, Rossmeisl J, Strasser P (2019) Electrochemical reduction of CO2 on metal-nitrogen-doped carbon catalysts. ACS Catal 9(8):7270–7284. https://doi.org/10.1021/acscatal.9b01405

    Article  CAS  Google Scholar 

  12. Ma T, Fan Q, Li X, Qiu JS, Wu TB, Sun ZY (2019) Graphene-based materials for electrochemical CO2 reduction. J CO2 Util 30:168–182. https://doi.org/10.1016/j.jcou.2019.02.001

    Article  CAS  Google Scholar 

  13. Hori Y, Kikuchi K, Suzuki S (1985) Production of CO and CH4 in electrochemical reduction of CO2 at metal-electrodes in aqueous hydrogencarbonate solution. Chem Lett 14(11):1695–1698. https://doi.org/10.1246/cl.1985.1695

    Article  Google Scholar 

  14. Azuma M, Hashimoto K, Hiramoto M, Watanabe M, Sakata T (1990) Electrochemical reduction of carbon-dioxide on various metal-electrodes in low-temperature aqueous KHCO3 media. J Electrochem Soc 137(6):1772–1778. https://doi.org/10.1149/1.2086796

    Article  CAS  Google Scholar 

  15. Mistry H, Varela AS, Kuhl S, Strasser P, Roldan Cuenya B (2016) Nanostructured electrocatalysts with tunable activity and selectivity. Nat Rev Mater. https://doi.org/10.1038/natrevmats.2016.9

    Article  Google Scholar 

  16. Lee CW, Yang KD, Nam DH, Jang JH, Cho NH, Im SW, Nam KT (2018) Defining a materials database for the design of copper binary alloy catalysts for electrochemical CO2 conversion. Adv Mater. https://doi.org/10.1002/adma.201704717

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gao DF, Zhou H, Cai F, Wang JG, Wang GX, Bao XH (2018) Pd-containing nanostructures for electrochemical CO2 reduction reaction. ACS Catal 8(2):1510–1519. https://doi.org/10.1021/acscatal.7b03612

    Article  CAS  Google Scholar 

  18. Wang ZL, Li CL, Yamauchi Y (2016) Nanostructured nonprecious metal catalysts for electrochemical reduction of carbon dioxide. Nano Today 11(3):373–391. doi:https://doi.org/10.1016/j.nantod.2016.05.007

    Article  CAS  Google Scholar 

  19. Jia MW, Choi C, Wu TS, Ma C, Kang P, Tao HC, Fan Q, Hong S, Liu SZ, Soo YL, Jung YS, Qiu JS, Sun ZY (2018) Carbon-supported Ni nanoparticles for efficient CO2 electroreduction. Chem Sci. https://doi.org/10.1039/c8sc03732a

    Article  PubMed  PubMed Central  Google Scholar 

  20. Alavi-Tabari SAR, Khalilzadeh MA, Karimi-Maleh H (2018) Simultaneous determination of doxorubicin and dasatinib as two breast anticancer drugs uses an amplified sensor with ionic liquid and ZnO nanoparticle. J Electroanal Chem 811:84–88. https://doi.org/10.1016/j.jelechem.2018.01.034

    Article  CAS  Google Scholar 

  21. Larrazabal GO, Martin AJ, Perez-Ramirez J (2017) Building blocks for high performance in electrocatalytic CO2 reduction: materials, optimization strategies, and device engineering. J Phys Chem Lett 8(16):3933–3944. https://doi.org/10.1021/acs.jpclett.7b01380

    Article  CAS  PubMed  Google Scholar 

  22. Wu J, Sharifi T, Gao Y, Zhang T, Ajayan PM (2019) Emerging carbon-based heterogeneous catalysts for electrochemical reduction of carbon dioxide into value-added chemicals. Adv Mater 31(13):e1804257. https://doi.org/10.1002/adma.201804257

    Article  CAS  PubMed  Google Scholar 

  23. Chen CJ, Sun XF, Yan XP, Wu YH, Liu HZ, Zhu QG, Bediako BBA, Han BX (2020) Boosting CO2 electroreduction on N,P-co-doped carbon aerogels. Angew Chem Int Edit 59(27):11123–11129. https://doi.org/10.1002/anie.202004226

    Article  CAS  Google Scholar 

  24. Lin ZQ, Zeng ZP, Gui XC, Tang ZK, Zou MC, Cao AY (2016) Carbon nanotube sponges, aerogels, and hierarchical composites: synthesis, properties, and energy applications. Adv Energy Mater. https://doi.org/10.1002/aenm.201600554

    Article  Google Scholar 

  25. Arzaghi H, Rahimi B, Adel B, Rahimi G, Taherian Z, Sanati AL, Dezfuli AS (2021) Nanomaterials modulating stem cell behavior towards cardiovascular cell lineage. Mater Adv 2(7):2231–2262. https://doi.org/10.1039/d0ma00957a

    Article  CAS  Google Scholar 

  26. Karimi-Maleh H, Bananezhad A, Ganjali MR, Norouzi P, Sadrnia A (2018) Surface amplification of pencil graphite electrode with polypyrrole and reduced graphene oxide for fabrication of a guanine/adenine DNA based electrochemical biosensors for determination of didanosine anticancer drug. Appl Surf Sci 441:55–60. https://doi.org/10.1016/j.apsusc.2018.01.237

    Article  CAS  Google Scholar 

  27. Medetalibeyoglu H, Beytur M, Manap S, Karaman C, Kardas F, Akyildirim O, Kotan G, Yuksek H, Atar N, Yola ML (2020) Molecular imprinted sensor including Au nanoparticles/polyoxometalate/two-dimensional hexagonal boron nitride nanocomposite for diazinon recognition. ECS J Solid State Sci. https://doi.org/10.1149/2162-8777/abbe6a

    Article  Google Scholar 

  28. Ensafi AA, Karimi-Maleh H, Mallakpour S (2013) A new strategy for the selective determination of glutathione in the presence of nicotinamide adenine dinucleotide (NADH) using a novel modified carbon nanotube paste electrode. Colloid Surf B 104:186–193. https://doi.org/10.1016/j.colsurfb.2012.12.011

    Article  CAS  Google Scholar 

  29. Karimi-Maleh H, Sanati AL, Gupta VK, Yoosefian M, Asif M, Bahari A (2014) A voltammetric biosensor based on ionic liquid/NiO nanoparticle modified carbon paste electrode for the determination of nicotinamide adenine dinucleotide (NADH). Sens Actuat B-Chem 204:647–654. https://doi.org/10.1016/j.snb.2014.08.037

    Article  CAS  Google Scholar 

  30. Karimi-Maleh H, Orooji Y, Karimi F, Alizadeh M, Baghayeri M, Rouhi J, Tajik S, Beitollahi HD, Agarwal S, Gupta VK, Rajendran S, Ayati A, Fu L, Sanati AL, Tanhaei B, Sen F, Shabani-nooshabadi M, Asrami PN, Al-Othman A (2021) A critical review on the use of potentiometric based biosensors for biomarkers detection. Biosens Bioelectron. https://doi.org/10.1016/j.bios.2021.113252

    Article  PubMed  Google Scholar 

  31. Ensafi AA, Taei M, Khayamian T, Karimi-Maleh H, Hasanpour F (2010) Voltammetric measurement of trace amount of glutathione using multiwall carbon nanotubes as a sensor and chlorpromazine as a mediator. J Solid State Electrochem 14(8):1415–1423. https://doi.org/10.1007/s10008-009-0978-z

    Article  CAS  Google Scholar 

  32. Karaman C (2021) Orange peel derived-nitrogen and sulfur co-doped carbon dots: a nano-booster for enhancing ORR electrocatalytic performance of 3D graphene networks. Electroanalysis 33(5):1356–1369. https://doi.org/10.1002/elan.202100018

    Article  CAS  Google Scholar 

  33. Tahernejad-Javazmi F, Shabani-Nooshabadi M, Karimi-Maleh H (2019) 3D reduced graphene oxide/FeNi3-ionic liquid nanocomposite modified sensor; an electrical synergic effect for development of tert-butylhydroquinone and folic acid sensor. Compos Part B-Eng 172:666–670. https://doi.org/10.1016/j.compositesb.2019.05.065

    Article  CAS  Google Scholar 

  34. Gonalves AHA, Sicilian PHC, Alves OC, Cesar DV, Henriques CA, Gaspar AB (2020) Synthesis of a magnetic Fe3O4/RGO composite for the rapid photo-fenton discoloration of indigo carmine dye. Top Catal 63(11–14):1017–1029. https://doi.org/10.1007/s11244-020-01277-0

    Article  CAS  Google Scholar 

  35. Lin YT, Huang CW, Wang YH, Wu JCS (2020) High effective composite RGO/TiO(2) photocatalysts to degrade isopropanol pollutant in semiconductor industry. Top Catal 63(11–14):1240–1250. https://doi.org/10.1007/s11244-020-01263-6

    Article  CAS  Google Scholar 

  36. Mohanraj J, Durgalakshmi D, Rakkesh RA, Balakumar S, Rajendran S, Karimi-Maleh H (2020) Facile synthesis of paper based graphene electrodes for point of care devices: a double stranded DNA (dsDNA) biosensor. J Colloid Interface Sci 566:463–472. https://doi.org/10.1016/j.jcis.2020.01.089

    Article  CAS  PubMed  Google Scholar 

  37. Karimi-Maleh H, Shafieizadeh M, Taher MA, Opoku F, Kiarii EM, Govender PP, Ranjbari S, Rezapour M, Orooji Y (2020) The role of magnetite/graphene oxide nano-composite as a high-efficiency adsorbent for removal of phenazopyridine residues from water samples, an experimental/theoretical investigation. J Mol Liq. https://doi.org/10.1016/j.molliq.2019.112040

    Article  Google Scholar 

  38. Karaman C, Karaman O, Atar N, Yola ML (2021) Tailoring of cobalt phosphide anchored nitrogen and sulfur co-doped three dimensional graphene hybrid: boosted electrocatalytic performance towards hydrogen evolution reaction. Electrochim Acta. https://doi.org/10.1016/j.electacta.2021.138262

    Article  Google Scholar 

  39. Karaman C, Karaman O, Atar N, Yola ML (2021) Sustainable electrode material for high-energy supercapacitor: biomass-derived graphene-like porous carbon with three-dimensional hierarchically ordered ion highways. Phys Chem Chem Phys 23(22):12807–12821. https://doi.org/10.1039/d1cp01726h

    Article  CAS  PubMed  Google Scholar 

  40. Raoof JB, Ojani R, Karimi-Maleh H, Hajmohamadi MR, Biparva P (2011) Multi-wall carbon nanotubes as a sensor and ferrocene dicarboxylic acid as a mediator for voltammetric determination of glutathione in hemolysed erythrocyte. Anal Methods 3(11):2637–2643. https://doi.org/10.1039/c1ay05031a

    Article  CAS  Google Scholar 

  41. Yang HP, Wu Y, Lin Q, Fan LD, Chai XY, Zhang QL, Liu JH, He CX, Lin ZQ (2018) Composition tailoring via N and S co-doping and structure tuning by constructing hierarchical pores: metal-free catalysts for high-performance electrochemical reduction of CO2. Angew Chem Int Edit 57(47):15476–15480. https://doi.org/10.1002/anie.201809255

    Article  CAS  Google Scholar 

  42. Karaman O (2021) Oxygen reduction reaction performance boosting effect of nitrogen/sulfur co-doped graphene supported cobalt phosphide nanoelectrocatalyst: pH-universal electrocatalyst. ECS J Solid State Sci Technol. https://doi.org/10.1149/2162-8777/ac0608

    Article  Google Scholar 

  43. Wang YS, Chen JX, Wang GX, Li Y, Wen ZH (2018) Perfluorinated covalent triazine framework derived hybrids for the highly selective electroconversion of carbon dioxide into methane. Angew Chem Int Edit 57(40):13120–13124. https://doi.org/10.1002/anie.201807173

    Article  CAS  Google Scholar 

  44. Nakata K, Ozaki T, Terashima C, Fujishima A, Einaga Y (2014) High-yield electrochemical production of formaldehyde from CO2 and seawater. Angew Chem Int Edit 53(3):871–874. https://doi.org/10.1002/anie.201308657

    Article  CAS  Google Scholar 

  45. Liu YM, Chen S, Quan X, Yu HT (2015) Efficient electrochemical reduction of carbon dioxide to acetate on nitrogen-doped nanodiamond. J Am Chem Soc 137(36):11631–11636. https://doi.org/10.1021/jacs.5b02975

    Article  CAS  PubMed  Google Scholar 

  46. Karaman C, Karaman O, Yola BB, Ulker I, Atar N, Yola ML (2021) A novel electrochemical aflatoxin B1 immunosensor based on gold nanoparticle-decorated porous graphene nanoribbon and Ag nanocube-incorporated MoS2 nanosheets. New J Chem 45(25):11222–11233. https://doi.org/10.1039/d1nj02293h

    Article  CAS  Google Scholar 

  47. Xie JF, Zhao XT, Wu MX, Li QH, Wang YB, Yao JN (2018) Metal-free fluorine-doped carbon electrocatalyst for CO2 reduction outcompeting hydrogen evolution. Angew Chem Int Edit 57(31):9640–9644. https://doi.org/10.1002/anie.201802055

    Article  CAS  Google Scholar 

  48. Pope CG (1997) X-ray diffraction and the Bragg equation. J Chem Educ 74(1):129–131. https://doi.org/10.1021/ed074p129

    Article  CAS  Google Scholar 

  49. Kim TH, Jeon EK, Ko Y, Jang BY, Kim BS, Song HK (2014) Enlarging the d-spacing of graphite and polarizing its surface charge for driving lithium ions fast. J Mater Chem A 2(20):7600–7605. https://doi.org/10.1039/c3ta15360f

    Article  CAS  Google Scholar 

  50. Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett. https://doi.org/10.1103/PhysRevLett.97.187401

    Article  PubMed  Google Scholar 

  51. Malard LM, Pimenta MA, Dresselhaus G, Dresselhaus MS (2009) Raman spectroscopy in graphene. Phys Rep 473(5–6):51–87. https://doi.org/10.1016/j.physrep.2009.02.003

    Article  CAS  Google Scholar 

  52. Ferralis N (2010) Probing mechanical properties of graphene with Raman spectroscopy. J Mater Sci 45(19):5135–5149. https://doi.org/10.1007/s10853-010-4673-3

    Article  CAS  Google Scholar 

  53. Chen C, Huang Y, Meng ZY, Lu MW, Xu ZP, Liu PB, Li TH (2021) Experimental design and theoretical evaluation of nitrogen and phosphorus dual-doped hierarchical porous carbon for high-performance sodium-ion storage. J Mater Sci Technol 76:11–19. https://doi.org/10.1016/j.jmst.2020.11.014

    Article  Google Scholar 

  54. Chen ZP, Mou KW, Yao SY, Liu LC (2018) Highly selective electrochemical reduction of CO2 to formate on metal-free nitrogen-doped PC61BM. J Mater Chem A 6(24):11236–11243. https://doi.org/10.1039/c8ta03328e

    Article  CAS  Google Scholar 

  55. Wang HX, Chen YB, Hou XL, Ma CY, Tan TW (2016) Nitrogen-doped graphenes as efficient electrocatalysts for the selective reduction of carbon dioxide to formate in aqueous solution. Green Chem 18(11):3250–3256. https://doi.org/10.1039/c6gc00410e

    Article  CAS  Google Scholar 

  56. Sun XF, Kang XC, Zhu QG, Ma J, Yang GY, Liu ZM, Han BX (2016) Very highly efficient reduction of CO2 to CH4 using metal-free N-doped carbon electrodes. Chem Sci 7(4):2883–2887. https://doi.org/10.1039/c5sc04158a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang S, Kang P, Meyer TJ (2014) Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate. J Am Chem Soc 136(5):1734–1737. https://doi.org/10.1021/ja4113885

    Article  CAS  PubMed  Google Scholar 

  58. Wang H, Jia J, Song PF, Wang Q, Li DB, Min SX, Qian CX, Wang L, Li YF, Ma C, Wu T, Yuan JY, Antonietti M, Ozin GA (2017) Efficient electrocatalytic reduction of CO2 by nitrogen-doped nanoporous carbon/carbon nanotube membranes: a step towards the electrochemical CO2 refinery. Angew Chem Int Edit 56(27):7847–7852. https://doi.org/10.1002/anie.201703720

    Article  CAS  Google Scholar 

  59. Zhang XL, Li FW, Zhang Y, Bond AM, Zhang J (2018) Stannate derived bimetallic nanoparticles for electrocatalytic CO2 reduction. J Mater Chem A 6(17):7851–7858. https://doi.org/10.1039/c8ta02429d

    Article  CAS  Google Scholar 

  60. Chen ZP, Yao SY, Liu LC (2017) 3D hierarchical porous structured carbon nanotube aerogel-supported Sn spheroidal particles: an efficient and selective catalyst for electrochemical reduction of CO2 to formate. J Mater Chem A 5(47):24651–24656. https://doi.org/10.1039/c7ta07495f

    Article  CAS  Google Scholar 

  61. Yu JL, Liu HY, Song SQ, Wang Y, Tsiakaras P (2017) Electrochemical reduction of carbon dioxide at nanostructured SnO2/carbon aerogels: The effect of tin oxide content on the catalytic activity and formate selectivity. Appl Catal A-Gen 545:159–166. https://doi.org/10.1016/j.apcata.2017.07.043

    Article  CAS  Google Scholar 

  62. Zhang S, Kang P, Ubnoske S, Brennaman MK, Song N, House RL, Glass JT, Meyer TJ (2014) Polyethylenimine-enhanced electrocatalytic reduction of CO2 to formate at nitrogen-doped carbon nanomaterials. J Am Chem Soc 136(22):7845–7848. https://doi.org/10.1021/ja5031529

    Article  CAS  PubMed  Google Scholar 

  63. Lei FC, Liu W, Sun YF, Xu JQ, Liu KT, Liang L, Yao T, Pan BC, Wei SQ, Xie Y (2016) Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction. Nat Commun. https://doi.org/10.1038/ncomms12697

    Article  PubMed  PubMed Central  Google Scholar 

  64. He GY, Tang HY, Wang H, Bian ZY (2018) Highly selective and active Pd-In/three-dimensional graphene with special structure for electroreduction CO2 to formate. Electroanalysis 30(1):84–93. https://doi.org/10.1002/elan.201700525

    Article  CAS  Google Scholar 

  65. Sreekanth N, Nazrulla MA, Vineesh TV, Sailaja K, Phani KL (2015) Metal-free boron-doped graphene for selective electroreduction of carbon dioxide to formic acid/formate. Chem Commun 51(89):16061–16064. https://doi.org/10.1039/c5cc06051f

    Article  CAS  Google Scholar 

Download references

Acknowledgements

None.

Author information

Authors and Affiliations

Authors

Contributions

Author Contributions

The authors actively participated in the literature survey, the interpretation of results and the preparation of the draft and final version of the manuscript. The authors read and approved the final manuscript.

Corresponding author

Correspondence to Ceren Karaman.

Ethics declarations

Conflict of interest

There is no conflict of interest to declare.

Ethical Approval

This study does not require an ethics committee.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karaman, C. Boosting Effect of Nitrogen and Phosphorous Co-doped Three-Dimensional Graphene Architecture: Highly Selective Electrocatalysts for Carbon Dioxide Electroreduction to Formate. Top Catal 65, 656–667 (2022). https://doi.org/10.1007/s11244-021-01500-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-021-01500-6

Keywords

Navigation