Skip to main content
Log in

Fabrication of MXene/chitosan/polyurea nanocomposite decorated on a graphenized substrate for electro-enhanced solid-phase microextraction of diclofenac followed by its determination using differential pulse voltammetry

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel solid-phase microextraction fiber based on MXene-chitosan-polyurea (MXene/CS/EPPU) nanocomposite decorated on a graphenized pencil lead fiber (MXene/CS/EPPU/GPLF) was prepared and utilized for electro-enhanced solid-phase microextraction (EE-SPME) of diclofenac (DCF) in biological samples. After extraction and desorption of DCF, it was determined by differential pulse voltammetry (DPV). For this purpose, the working electrode was prepared by deposition of the mentioned MXene/CS/EPPU nanocomposite onto the graphenized pencil lead. The synthesized SPME fiber was characterized using scanning electron microscopy and X-ray diffraction techniques. The effect of various parameters influencing the extraction and the desorption process were investigated, including applied voltage in the extraction and desorption steps, extraction and desorption times, and pH. The developed method exhibited a rather wide linearity in the range 2–1200 ng mL−1 (R2 = 0.985) for the determination of DCF in plasma samples. The limit of detection and the limit of quantification for plasma samples were estimated to be 0.58 and 1.9 ng mL−1 based on the 3Sb/m and 10Sb/m definitions, respectively. The method’s accuracy and applicability have been evaluated by the analysis of plasma samples, leading to the relative recoveries in the range 87.0% and 98.0% with the relative standard deviations lower than 3.1%.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The online version contains supplementary material.

References

  1. Scholer DW, Ku EC, Bottcher I, Schewiezer A (1986) Pharmacology of diclofenac sodium. Am J Med 80(4):34–38. https://doi.org/10.1016/0002-9343(86)90077-X

    Article  CAS  PubMed  Google Scholar 

  2. Todd PA, Sorkin EM (1988) Diclofenac sodium: a reappraisal of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy. Drugs 35:244–285. https://doi.org/10.2165/00003495-198835030-00004

    Article  CAS  PubMed  Google Scholar 

  3. de Paiva Carvalho RL, Leonardo P, Mendes GD, Lima FPS, Lima MO, Marcos RL, Lopes-Martins RAB (2019) Pharmacokinetic and pharmacodynamics of sodium diclofenac (topical and IM) associated with laser photobiomodulation on skeletal muscle strain in rats. Int J Photoenergy 2019:2782709. https://doi.org/10.1155/2019/2782709

    Article  CAS  Google Scholar 

  4. Mostafavi M, Yaftian MR, Piri F, Shayani-Jam H (2018) A new diclofenac molecularly imprinted electrochemical sensor based upon a polyaniline/reduced graphene oxide nano-composite. Biosens Bioelectron 122:160–167. https://doi.org/10.1016/j.bios.2018.09.047

    Article  CAS  PubMed  Google Scholar 

  5. Chemat F, Vian MA, Cravotto G (2012) Green extraction of natural products: concept and principles. Int J Mol Sci 13(7):8615–8627. https://doi.org/10.3390/ijms13078615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Arthur CL, Pawliszyn J (1990) Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal Chem 62(19):2145–2148. https://doi.org/10.1021/ac00218a019

    Article  CAS  Google Scholar 

  7. Bagheri H, Ayazi Z, Babanezhad E (2010) A sol-gel-based amino functionalized fiber for immersed solid-phase microextraction of organophosphorus pesticides from environmental samples. Microchem J 94(1):1–6. https://doi.org/10.1016/j.microc.2009.08.003

    Article  CAS  Google Scholar 

  8. Bagheri H, Ayazi Z, Sistani H (2011) Chemically bonded carbon nanotubes on modified gold substrate as novel unbreakable solid phase microextraction fiber. Microchim Acta 174:295–301. https://doi.org/10.1007/s00604-011-0621-4

    Article  CAS  Google Scholar 

  9. Rohanifar A, Rodriguez LB, Devasurendra AM, Alipourasiabi N, Anderson JL, Kirchhoff JR (2018) Solid-phase microextraction of heavy metals in natural water with a polypyrrole / carbon nanotube/1, 10–phenanthroline composite sorbent material. Talanta 188:570–577. https://doi.org/10.1016/j.talanta.2018.05.10

    Article  CAS  PubMed  Google Scholar 

  10. Chen H, Wang J, Zhang W, Guo Y, Ding Q, Zhang L (2023) In situ rapid electrochemical fabrication of porphyrin-based covalent organic frameworks: novel fibers for electro-enhanced solid-phase microextraction. ACS Appl Mater 15(9):12453–12461. https://doi.org/10.1021/acsami.3c00580

    Article  CAS  Google Scholar 

  11. Dehghani M, Ansari M, Shahidi M, Kazemipour M (2021) Electrochemical fabrication of polypyrrole/hazelnut shells modified carbon nanocomposite sorbent for determination of polycyclic aromatic hydrocarbons using headspace solid-phase microextraction-gas chromatography. Green Chem Lett Rev 14(3):551–562. https://doi.org/10.1080/17518253.2021.190243

    Article  CAS  Google Scholar 

  12. Liu X, Wang X, Tan F, Zhao H, Quan X, Chen J, Li L (2012) An electrochemically enhanced solid-phase microextraction approach based on molecularly imprinted polypyrrole/multi-walled carbon nanotubes composite coating for selective extraction of fluoroquinolones in aqueous samples. Anal Chim Acta 727:26–33. https://doi.org/10.1016/j.aca.2012.03.054

    Article  CAS  PubMed  Google Scholar 

  13. Sereshti H, Karami F, Nouri N, Farahani A (2021) Electrochemically controlled solid phase microextraction based on a conductive polyaniline-graphene oxide nanocomposite for extraction of tetracyclines in milk and water. J Sci Food Agric 101(6):2304–2311. https://doi.org/10.1002/jsfa.10851

    Article  CAS  PubMed  Google Scholar 

  14. Zhang J, Wen CY, Li Q, Meteku BE, Zhao R, Cui B, Li X, Zeng J (2019) Electro-enhanced solid-phase microextraction of bisphenol A from thermal papers using a three-dimensional graphene coated fiber. J Chromatogr A 1585:27–33. https://doi.org/10.1016/j.chroma.2018.11.063

    Article  CAS  PubMed  Google Scholar 

  15. Cai X, Luo Y, Liu B, Cheng HM (2018) Preparation of 2D material dispersions and their applications. Chem Soc Rev 47(16):6224–6266. https://doi.org/10.1039/C8CS00254A

    Article  CAS  PubMed  Google Scholar 

  16. Tan C, Cao X, Wu XJ, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam GH (2017) Recent advances in ultrathin two dimensional nanomaterials. Chem Rev 117(9):6225–6331. https://doi.org/10.1021/acs.chemrev.6b00558

    Article  CAS  PubMed  Google Scholar 

  17. Hu K, Cheng J, Wang K, Zhao Y, Liu Y, Yang H, Zhang Z (2022) Sensitive electrochemical immunosensor for CYFRA21-1 detection based on AuNPs@ MoS2@ Ti3C2Tx composites. Talanta 238:122987. https://doi.org/10.1016/j.talanta.2021.122987

    Article  CAS  PubMed  Google Scholar 

  18. Ayazi Z, Saei SF, Sarnaghi SP (2023) A novel self-supportive thin film based on graphene oxide reinforced chitosan nano-biocomposite for thin film microextraction of fluoxetine in biological and environmental samples. JPBA 236:115678. https://doi.org/10.1016/j.jpba.2023.115678

    Article  CAS  Google Scholar 

  19. Abdolmohammad-Zadeh H, Ayazi Z, Veladi M (2023) A magnetic nano-biocomposite based on calcined Ni–Fe layered double hydroxide and chitosan as an adsorbent for cadmium (II). J Iran Chem Soc 20(6):1257–1270. https://doi.org/10.1007/s13738-023-02753-6

    Article  CAS  Google Scholar 

  20. Gashu M, Aragaw BA, Tefera M (2023) Voltammetric determination of oxytetracycline in milk and pharmaceuticals samples using polyurea modified glassy carbon electrode. J Food Compos Anal 117:105128. https://doi.org/10.1016/j.jfca.2023.105128

    Article  CAS  Google Scholar 

  21. Ma H, Chen Y, Li X, Li B (2021) Advanced applications and challenges of electropolymerized conjugated microporous polymer films. Adv Funct Mater 31(33):2101861. https://doi.org/10.1002/adfm.202101861

    Article  CAS  Google Scholar 

  22. Ayazi Z, Jaafarzadeh R (2017) Graphene oxide/polyamide nanocomposite as a novel stir bar coating for sorptive extraction of organophosphorous pesticides in fruit juice and vegetable samples. Chromatographia 80:1411–1422. https://doi.org/10.1007/s10337-017-3364-5

    Article  CAS  Google Scholar 

  23. da Rosa Salles T, Schnorr C, Silva Luis FO, Bhon Rhoden CR (2023) Effective diuretic drug uptake employing magnetic carbon nanotubes derivatives: adsorption study and in vitro geno-cytotoxic assessment. Sep Purif Technol 315:123713. https://doi.org/10.1016/j.seppur.2023.123713

    Article  CAS  Google Scholar 

  24. Nunes FB, Viana AR, Silva luis FO, Bhon rhoden CR (2024) Removal of selective serotonin reuptake inhibitor using magnetic graphene oxide derivatives: adsorption study in low drug concentration using HPLC quantification, in vitro safety, and phytotoxicity. J Environ Chem Eng 12(2):112336. https://doi.org/10.1016/j.jece.2024.112336

    Article  CAS  Google Scholar 

  25. Mohammad-Rezaei R, Soroodian S (2023) Controlled electrodeposited of cobalt oxide nanoparticles on graphenized pencil lead electrode as efficient electrocatalyst for oxygen evolution reaction in alkaline medium. Commun Catal 2(1):59–70. https://doi.org/10.22049/CIC.2023.28331.1028

    Article  Google Scholar 

  26. Alhabeb M, Maleski K, Anasori B, Lelyukh P, Clark L, Sin S, Gogotsi Y (2017) Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem Mater 29(18):7633–7644. https://doi.org/10.1021/acs.chemmater.7b02847

    Article  CAS  Google Scholar 

  27. Mohammad-Rezaei R, Soroodian S (2017) Preparation and characterization of graphenized pencil lead electrode for sensitive determination of bisphenol A in canned food and plastic bottled drinking Water samples. Sens Lett 15(9):729–735. https://doi.org/10.1166/sl.2017.3859

    Article  Google Scholar 

  28. Gashu M, Aragaw BA, Tefera M (2023) Voltammetric determination of oxytetracycline in milk and pharmaceuticals samples using polyurea modified glassy carbon electrode. J Food Compos Anal 128:105128. https://doi.org/10.1016/j.jfca.2023.105128

    Article  CAS  Google Scholar 

  29. Khot AC, Dongale D, Kesavan AV (2021) Ti3C2-based MXene oxide nanosheets for resistive memory and synaptic learning applications. Appl Mater Interfaces 13(4):5216–5227. https://doi.org/10.1021/acsami.0c19028

    Article  CAS  Google Scholar 

  30. Muhsan AA, Lafdi K (2019) Numerical study of the electrochemical exfoliation of graphite. SN Appl Sci 1:1–8. https://doi.org/10.1007/s42452-019-0296-8

    Article  CAS  Google Scholar 

  31. Cockreham CB, Goncharov VG, Hammond-Pereira E, Reece ME, Strzelecki A, Xu C, Wu WD (2022) Energetic stability and interfacial complexity of Ti3C2Tx MXenes synthesized with HF/HCl and CoF2/HCl as etching agents. ACS Appl Mater Interfaces 14(36):41542–41554. https://doi.org/10.1021/acsami.2c09669

    Article  CAS  PubMed  Google Scholar 

  32. Ahmadi SH, Manbohi A, Heydar KT (2015) Electrochemically controlled in-tube solid phase microextraction. Anal Chim Acta 853:335–341. https://doi.org/10.1016/j.aca.2014.10.040

    Article  CAS  PubMed  Google Scholar 

  33. Soheili-Azad P, Yaftian MR, Dorraji MSS (2020) Zn/Al-layered double hydroxide–graphene oxide nanocomposite use in the solid-phase extraction–preconcentration and HPLC determination of diclofenac. Chem Pap 74(12):4419–4432. https://doi.org/10.1007/s11696-020-01252-9

    Article  CAS  Google Scholar 

  34. Soheili-Azad P, Yaftian MR, Dorraji MSS (2019) Application of zinc/aluminum layered double hydroxide nanosorbent in a fixed-bed column for SPE-preconcentration followed by HPLC determination of diclofenac in biological and hospital wastewater samples. Microchemical J 148:270–276. https://doi.org/10.1016/j.microc.2019.05.008

    Article  CAS  Google Scholar 

  35. Darvishnejad F, Raoof JB, Ghani M, Ojani R (2023) Keggin type phosphotungstic acid intercalated copper-chromium-layered double hydroxide reinforced porous hollow fiber as a sorbent for hollow fiber solid phase microextraction of selected chlorophenols besides their quantification via high performance liquid chromatography. J Chromatogr A 1697:463993. https://doi.org/10.1016/j.chroma.2023.463993

    Article  CAS  PubMed  Google Scholar 

  36. Ghani M, Ghoreishi SM, Salehinia S, Mousavi N, Ansarinejad H (2019) Electrochemically decorated network-like cobalt oxide nanosheets on nickel oxide nanoworms substrate as a sorbent for the thin film microextraction of diclofenac. Microchem J 146:149–156. https://doi.org/10.1016/j.microc.2018.12.044

    Article  CAS  Google Scholar 

  37. Khoshravesh SH, Azizi Z, Javadian H, Farsadrooh M, Hashemifard N, Soltani M, Taghavi M (2022) Synthesis of resorcinol-functionalized multi-walled carbon nanotubes as a nano adsorbent for the solid-phase extraction and determination of diclofenac in human plasma and aqueous samples. Colloids Interface Sci Commun 46:100555. https://doi.org/10.1016/j.colcom.2021.100555

    Article  CAS  Google Scholar 

  38. Mirzajani R, Kardani F, Ramezani Z (2019) Preparation and characterization of magnetic metal–organic framework nanocomposite as solid-phase microextraction fibers coupled with high-performance liquid chromatography for determination of non-steroidal anti-inflammatory drugs in biological fluids and tablet formulation samples. Microchem J 144:270–284. https://doi.org/10.1016/j.microc.2018.09.014

    Article  CAS  Google Scholar 

  39. Pebdani AA, Shabani AMH, Dadfarnia S, Khodadoust S (2015) Solid phase microextraction of diclofenac using molecularly imprinted polymer sorbent in hollow fiber combined with fiber optic-linear array spectrophotometery. Spectrochim Acta A 147:26–30. https://doi.org/10.1016/j.saa.2015.03.057

    Article  CAS  Google Scholar 

  40. Mohammad-Rezaei R, Golmohammadpour M (2020) Controlled electrodeposition of Au‐copper oxide nanocomposite on a renewable carbon ceramic electrode for sensitive determination of NADH in serum samples. Electroanalysis 32(3):606–612. https://doi.org/10.1002/elan.201900592

    Article  CAS  Google Scholar 

Download references

Funding

The authors extend their gratitude to the Research Council of Azarbaijan Shahid Madani University for their generous financial support (Grant no. ASMU/1401/995 and ASMU/1401/781).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Rahim Mohammad-Rezaei, Zahra Ayazi; methodology: Mahdi Golmohammadpour; formal analysis and investigation: Mahdi Golmohammadpour; writing—original draft preparation: Mahdi Golmohammadpour; writing—review and editing: Zahra Ayazi, Rahim Mohammad-Rezaei; funding acquisition: Zahra Ayazi, Rahim Mohammad-Rezaei; resources: Zahra Ayazi, Rahim Mohammad-Rezaei; supervision: Rahim Mohammad-Rezaei, Zahra Ayazi.

Corresponding authors

Correspondence to Zahra Ayazi or Rahim Mohammad-Rezaei.

Ethics declarations

Ethical approval

Ethical approval for the study was granted by the Ethics Committees at the Iranian Blood Transfusion Organization (IBTO, Tabriz, East Azarbaijan Province, Iran). All plasma samples used in this study were collected on May 2023 from healthy people, who were volunteer people for blood donation.

Conflict of interest

The authors decalre no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golmohammadpour, M., Ayazi, Z. & Mohammad-Rezaei, R. Fabrication of MXene/chitosan/polyurea nanocomposite decorated on a graphenized substrate for electro-enhanced solid-phase microextraction of diclofenac followed by its determination using differential pulse voltammetry. Microchim Acta 191, 315 (2024). https://doi.org/10.1007/s00604-024-06379-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06379-0

Keywords

Navigation