Skip to main content
Log in

MBE Growth of Mid-wave Infrared HgCdTe Layers on GaSb Alternative Substrates

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

GaSb has been studied as a new alternative substrate for growing HgCdTe via molecular beam epitaxy (MBE). Cross-sectional transmission electron microscopy (TEM) studies indicate that MBE-grown CdTe buffer layers on GaSb have much lower misfit dislocation density than comparable layers grown on GaAs. The MBE-grown mid-wave infrared (MWIR) HgCdTe layers on GaSb substrates present material quality comparable to those grown on GaAs substrates, which is one of the state-of-the-art alternative substrates currently used to grow HgCdTe for the fabrication of MWIR detectors and focal plane arrays. Typically, HgCdTe materials grown on GaSb are found to have a rocking curve (double crystal x-ray diffraction) full width at half maximum of ~122 arcsec and an etch pit density of ~mid-106 cm–2. Electron backscatter diffraction mapping shows that the lattice misorientation/misfit dislocations near the HgCdTe/CdTe interface are negligible for GaSb substrates in comparison to GaAs substrates, and that the material quality of the HgCdTe layer on GaSb is determined primarily by the material quality of the CdTe buffer layer. These preliminary results are very encouraging considering that this is a relatively recent research effort, and higher quality MBE-grown HgCdTe materials are expected on GaSb substrates with further optimization of HgCdTe growth conditions as well as further improvements in the growth conditions for CdTe buffer layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Rogalski, Rep. Prog. Phys. 68, 2267 (2005).

    Article  Google Scholar 

  2. A. Rogalski, J. Antoszewski, and L. Faraone, J. Appl. Phys. 105, 091101 (2009).

    Article  Google Scholar 

  3. J.D. Benson, L.O. Bubulac, P.J. Smith, R.N. Jacobs, J.K. Markunas, M. Jaime-Vasquez, L.A. Almeida, A. Stoltz, J.M. Arias, G. Brill, Y. Chen, P.S. Wijewarnasuriya, S. Farrell, and U. Lee, J. Electron. Mater. 41, 2971 (2012).

    Article  Google Scholar 

  4. R.N. Jacobs, C. Nozaki, L.A. Almeida, M. Jaime-Vasquez, C. Lennon, J.K. Markunas, D. Benson, P. Smith, W.F. Zhao, D.J. Smith, C. Billman, J. Arias, and J. Pellegrino, J. Electron. Mater. 41, 2707 (2012).

    Article  Google Scholar 

  5. J.P. Zanatta, G. Badano, P. Ballet, C. Largreron, J. Baylet, O. Gravrand, J. Rothman, P. Castelein, J.P. Chamonal, A. Million, G. Destefanis, S. Mibord, E. Brochier, and P. Costa, J. Electron. Mater. 35, 1231 (2006).

    Article  Google Scholar 

  6. W. Lei, R.J. Gu, J. Antoszewski, J. Dell, and L. Faraone, J. Electron. Mater. 43, 2788 (2014).

    Article  Google Scholar 

  7. L. He, X. Fu, Q. Wei, W. Wang, L. Chen, Y. Wu, X. Hu, J. Yang, Q. Zhang, R. Ding, X. Chen, and W. Lu, J. Electron. Mater. 37, 1189 (2008).

    Article  Google Scholar 

  8. J.J. Kim, R.N. Jacobs, L.A. Almeida, M. Jaime-Vasquez, C. Nozaki, and D.J. Smith, J. Electron. Mater. 42, 3142 (2013).

    Article  Google Scholar 

  9. K.K. Lee, K. Doyle, J. Chai, J.H. Dinan, and T.H. Myers, J. Electron. Mater. 41, 2799 (2012).

    Article  Google Scholar 

  10. S.I. Wright, M.M. Nowell, and D.P. Field, Microsc. Microanal. 17, 316 (2011).

    Article  Google Scholar 

  11. Y. Shao, L. Zhang, X. Hao, Y. Wu, Y. Dai, Y. Tian, and Q. Huo, Scientific Reports, 4, article no: 5934 (2014). doi:10.1038/srep05934.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Lei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, W., Gu, R., Antoszewski, J. et al. MBE Growth of Mid-wave Infrared HgCdTe Layers on GaSb Alternative Substrates. J. Electron. Mater. 44, 3180–3187 (2015). https://doi.org/10.1007/s11664-015-3876-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3876-4

Keywords

Navigation