Skip to main content
Log in

HgCdTe Films Grown by MBE on CZT(211)B Substrates

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

An investigation of the properties of HgCdTe films grown by MBE and devices made from such films are reported. Through the precise control of growth conditions and the screening of the Zn component of CZT(211)B substrates, high-quality HgCdTe films were successfully deposited onto the CZT(211)B substrates and characterized by x-ray diffraction rocking curve analysis and etch pit density analysis. X-ray rocking curve (422) reflection full-width at half-maximum (FWHM) of less than 15 arcsec was obtained for Hg0.7Cd0.3Te epitaxial films, and etch pit density (EPD) of about 2 × 104 cm−2 was observed. At the same time, the relationship between the FWHM of the x-ray double-crystal rocking curve and EPD was confirmed. By optimizing the pretreatment process of the CZT(211)B substrate, a further significant reduction in HgCdTe macrodefect densities to 54 cm−2 to 1000 cm−2 was observed on CdZnTe, including occasional occurrences of very few or no large "void clusters" that are often observed. Planar p-on-n HgCdTe mid-wave infrared (MWIR) focal plane arrays (FPAs) were fabricated based on MBE in situ indium doping and arsenic ion implantation technology. The temperature-dependent performance of planar p-on-n MWIR FPAs shows that the device has the ability to operate at high temperature of about 140 K with high performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. C. Junhao, Narrow-Gap Semiconductor Physics (Beijing: Science Press, 2005).

    Google Scholar 

  2. Y. Jianrong, Physics and Technology of HgCdTe Materials (Beijing: National Defense Industry Press, 2012).

    Google Scholar 

  3. A. Rogalski, J. Antoszewski, and L. Faraone, Third-generation infrared photodetector arrays. J. Appl. Phys. 105(9), 4 (2009).

    Article  Google Scholar 

  4. A. Rogalski, New material systems for third generation infrared detectors, in Ninth International Conference on Correlation Optics, SPIE, 7388, 178-189 (2009).

  5. P.S. Wijewarnasuriya, P.Y. Emelie, A. D’Souza, G. Brill, M.G. Stapelbroek, S. Velicu, Y. Chen, C. Grein, S. Sivananthan, and N.K. Dhar, Nonequilibrium operation of arsenic diffused long-wavelength infrared HgCdTe photodiodes. J. Electron. Mater. 37(9), 1283–1290 (2008).

    Article  CAS  Google Scholar 

  6. D. Lee, M. Carmody, E. Piquette, P. Dreiske, A. Chen, A. Yulius, D. Edwall, S. Bhargava, M. Zandian, and W.E. Tennant, High-operating temperature HgCdTe: a vision for the near future. J. Electron. Mater. 45(9), 4587–4595 (2016).

    Article  CAS  Google Scholar 

  7. P. Madejczyk, W. Gawron, A. Kebłowski, K. Mlynarczyk, D. Stepien, P. Martyniuk, A. Rogalski, J. Rutkowski, and J. Piotrowski, Higher operating temperature IR detectors of the MOCVD grown HgCdTe heterostructures. J. Electron. Mater. 49(11), 6908–6917 (2020).

    Article  CAS  Google Scholar 

  8. D. Lee, P. Dreiske, J. Ellsworth, R. Cottier, A. Chen, S. Tallaricao, A. Yulius, M. Carmody, E. Piquette, M. Zandian, and S. Douglas, Law 19: the ultimate photodiode performance metric. Proc. SPIE 11407, 114070X-X114071 (2020).

    Google Scholar 

  9. M. Kopytko, and A. Rogalski, New insights into the ultimate performance of HgCdTe photodiodes. Sens. Actuators A 339, 113511 (2022).

    Article  CAS  Google Scholar 

  10. E.P.G. Smith, G.M. Venzor, A.M. Gallagher, M. Reddy, J.M. Peterson, D.D. Lofgreen, and J.E. Randolph, Large-format HgCdTe dual-band long-wavelength infrared focal-plane arrays. J. Electron. Mater. 40(8), 1630–1636 (2011).

    Article  CAS  Google Scholar 

  11. D.R. Rhiger, and J.W. Bangs, Current-voltage analysis of dual-band n-p-n HgCdTe detectors. J. Electron. Mater. 51(7), 4721–4730 (2022).

    Article  CAS  Google Scholar 

  12. M. Carmody, D. Lee, M. Zandian, J. Phillips, and J. Arias, Threading and misfit-dislocation motion in molecular-beam epitaxy-grown HgCdTe epilayers. J. Electron. Mater. 32(7), 710–716 (2003).

    Article  CAS  Google Scholar 

  13. H.F. Schaake, and A.J. Lewis, Electrically active defects in cid imaging arrays fabricated on Hg0.7Cd0.3Te. MRS Online Proc. Libr. (OPL). 14, 301 (1983).

    Article  CAS  Google Scholar 

  14. J.S. Chen, Etchant for revealing dislocations in II–VI compounds. U.S. Patent. 4,897,152 (1990-1-30).

  15. J.R. Yang, X.L. Cao, Y.F. Wei, and L. He, Traces of HgCdTe defects as revealed by etch pits. J. Electron. Mater. 37(9), 1241–1246 (2008).

    Article  CAS  Google Scholar 

  16. M. Reddy, J.M. Peterson, T. Vang, J.A. Franklin, M.F. Vilela, K. Olsson, E.A. Patten, W.A. Radford, J.W. Bangs, L. Melkonian, E.P.G. Smith, D.D. Lofgreen, and S.M. Johnson, Molecular beam epitaxy growth of HgCdTe on large-area Si and CdZnTe substrates. J. Electron. Mater. 40(8), 1706–1716 (2011).

    Article  CAS  Google Scholar 

  17. M. Reddy, D.D. Lofgreen, K.A. Jones, J.M. Peterson, W.A. Radford, J.D. Benson, and S.M. Johnson, Cross-sectional study of macrodefects in MBE dual-band HgCdTe on CdZnTe. J. Electron. Mater. 42(11), 3114–3118 (2013).

    Article  CAS  Google Scholar 

  18. B. Shojaei, R. Cottier, D. Lee, E. Piquette, M. Carmody, M. Zandian, and A. Yulius, Full-wafer strain and relaxation mapping of Hg1−xCdxTe multilayer structures grown on Cd1−yZnyTe substrates. J. Electron. Mater. 48(10), 6118–6123 (2019).

    Article  CAS  Google Scholar 

  19. F.E. Arkun, D.D. Edwall, J. Ellsworth, S. Douglas, M. Zandian, and M. Carmody, Characterization of HgCdTe films grown on large-area CdZnTe substrates by molecular beam epitaxy. J. Electron. Mater. 46(3), 5374–5378 (2017).

    Article  CAS  Google Scholar 

  20. M. Reddy, J.M. Peterso, F. Torres, B.T. Fennel, X. Jin, K. Doyle, T. Vang, N. Juanko, S.M. Johnson, and A. Hampp, Multi-wafer growth simultaneously on four 6 cm × 6 cm CdZnTe substrates for step increase in MBE HgCdTe wafer production. J. Electron. Mater. 51(7), 4758–4762 (2022).

    Article  CAS  Google Scholar 

  21. S.M. Johnson, D.R. Rhiger, J.P. Rosbeck, J.M. Peterson, S.M. Taylor, and M.E. Boyd, Effect of dislocations on the electrical and optical properties of long-wavelength infrared HgCdTe photovoltaic detectors. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 10(4), 1499–1506 (1992).

    Article  CAS  Google Scholar 

  22. R.D. Rajavel, D.M. Jamba, O.K. Wu, J.E. Jensen, J.A. Wilson, E.A. Patten, K. Kosai, P. Goetz, G.R. Chapman, and W.A. Radford, High performance HgCdTe two-color infrared detectors grown by molecular beam epitaxy. J. Cryst. Growth 175, 653–658 (1997).

    Article  Google Scholar 

  23. P. Lamarre, C. Fulk, D. D’Orsogna, E. Bellotti, F. Smith, P. LoVecchio, M.B. Reine, T. Parodos, J. Marciniec, S.P. Tobin, and J. Markunas, Characterization of dislocations in HgCdTe heteroepitaxial layers using a new substrate removal technique. J. Electron. Mater. 38(8), 1746–1754 (2009).

    Article  CAS  Google Scholar 

  24. E.P.G. Smith, L.T. Pham, G.M. Venzor, E.M. Norton, M.D. Newton, P.M. Goetz, V.K. Randall, A.M. Gallagher, G.K. Pierce, E.A. Patten, R.A. Coussa, K. Kosai, W.A. Radford, L.M. Giegerich, J.M. Edwards, S.M. Johnson, S.T. Baur, J.A. Roth, B. Nosho, T.J. De Lyon, J.E. Jensen, and R.E. Longshore, HgCdTe focal plane arrays for dual-color mid-and long-wavelength infrared detection. J. Electron. Mater. 33(6), 509–516 (2004).

    Article  CAS  Google Scholar 

  25. J.B. Varesi, A.A. Buell, J.M. Peterson, R.E. Bornfreund, M.F. Vilela, W.A. Radford, and S.M. Johnson, Performance of molecular-beam epitaxy-grown midwave infrared HgCdTe detectors on four-inch Si substrates and the impact of defects. J. Electron. Mater. 32(7), 661–667 (2003).

    Article  CAS  Google Scholar 

  26. M.F. Vilela, K.R. Olsson, E.M. Norton, J.M. Peterson, K. Rybnicek, D.R. Rhiger, C.W. Fulk, J.W. Bangs, D.D. Lofgreen, and S.M. Johnson, High-performance M/LWIR dual-band HgCdTe/Si focal-plane arrays. J. Electron. Mater. 42(11), 3231–3238 (2013).

    Article  CAS  Google Scholar 

  27. L. He, Y. Wu, L. Chen, M. Yu, J. Wu, J. Yang, Y. Li, R. Ding, and Q. Zhang, Progress in MBE growth of HgCdTe @ SITP. Proc. SPIE 4795, 17–26 (2002).

    Article  Google Scholar 

  28. D.R. Rhiger, S. Sen, J.M. Peterson, H. Chung, and M. Dudley, Lattice mismatch induced morphological features and strain in HgCdTe epilayers on CdZnTe substrates. J. Electron. Mater. 26(6), 515–523 (1997).

    Article  CAS  Google Scholar 

  29. C.L. Jiao, S.R. Zhao, X.Q. Chen, and Y.F. Wei, The relationship of lattice mismatch the HgCdTe/CdZnTe with x-ray diffraction. Laser Infrared 37, 910–914 (2007).

    CAS  Google Scholar 

  30. Y. Chang, C.R. Becker, C.H. Grein, J. Zhao, C. Fulk, T. Casselman, R. Kiran, X.J. Wang, E. Robinson, S.Y. An, S. Mallick, S. Sivananthan, T. Aoki, C.Z. Wang, D.J. Smith, S. Velicu, J. Zhao, J. Crocco, Y. Chen, G. Brill, P.S. Wijewarnasuriya, N. Dhar, R. Sporken, and V. Nathan, Surface morphology and defect formation mechanisms for HgCdTe (211) B grown by molecular beam epitaxy. J. Electron. Mater. 37(9), 1171–1183 (2008).

    Article  CAS  Google Scholar 

  31. E.C. Piquette, M. Zandian, D.D. Edwall, and J.M. Arias, MBE growth of HgCdTe epilayers with reduced visible defect densities: kinetics considerations and substrate limitations. J. Electron. Mater. 30(6), 627–631 (2001).

    Article  CAS  Google Scholar 

  32. I.V. Sabinina, A.K. Gutakovsky, Yu.G. Sidorov, and A.V. Latyshev, Nature of V-shaped defects in HgCdTe epilayers grown by molecular beam epitaxy. J. Cryst. Growth 274(3–4), 339–346 (2005).

    Article  CAS  Google Scholar 

  33. M. Reddy, W.A. Radford, D.D. Lofgreen, K.R. Olsson, J.M. Peterson, and S.M. Johnson, Study of morphological defects on dual-band HgCdTe on CdZnTe. J. Electron. Mater. 43(8), 2991–2997 (2014).

    Article  CAS  Google Scholar 

  34. M. Reddy, J. Wilde, J.M. Peterson, D.D. Lofgreen, and S.M. Johnsonl, Study of macrodefects in MBE-Grown HgCdTe epitaxial layers using focused ion beam milling. J. Electron. Mater. 41(10), 2957–2964 (2012).

    Article  CAS  Google Scholar 

  35. M.A. Kinch, The future of infrared; III–Vs or HgCdTe? J. Electron. Mater. 44(9), 2969–2976 (2005).

    Article  Google Scholar 

  36. D. Eich, W. Schirmacher, S. Hanna, K.M. Mahlein, P. Fries, and H. Figgemeier, Progress of MCT detector technology at AIM towards smaller pitch and lower dark current. J. Electron. Mater. 46(9), 5448–5457 (2017).

    Article  CAS  Google Scholar 

  37. L. Rubaldo, A. Brunner, P. Guinedor, R. Taalat, J. Berthoz, D. Sam-Giao, L. Dargent, N. Péré-Laperne, V. Chaffraix, M.L. Bourqui, Y. Loquet, and J. Coussement, Recent advances in Sofradir IR on II–VI photodetectors for HOT applications. Quantum Sens. Nano Electron. Photonics XIII. 9755, 157–170 (2016).

    Google Scholar 

Download references

Acknowledgments

This work is supported by the Kunming Institute of Physics. The authors wish to thank all of their colleagues at the Kunming Institute of Physics who have worked together on the development of the HgCdTe described in this paper.

Funding

Funding is provided by the National Key Research and Development Program of China (No. SQ2020YFB200190).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Kong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, G., Kong, J.C., Yang, J. et al. HgCdTe Films Grown by MBE on CZT(211)B Substrates. J. Electron. Mater. 52, 2441–2448 (2023). https://doi.org/10.1007/s11664-022-10193-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-10193-w

Keywords

Navigation