Skip to main content
Log in

Development of MBE II–VI Epilayers on GaAs(211)B

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Large-area, low-cost substrates are envisioned for next-generation HgCdTe infrared focal-plane arrays (IRFPA). Si, GaAs, Ge, and InSb have been previously examined as potential candidates. Fabrication of IRFPAs based on these substrates is limited by fundamental materials properties that potentially lead to lower detector performance and operability. Lattice and thermal mismatch between the substrate and epilayer are just two of several material factors that must be considered. We have reviewed these factors in the context of more recent data, and determined it worthwhile to revisit the use of GaAs substrates for epitaxial growth of HgCdTe. Our study starts with an evaluation of the surface quality (epireadiness) of commercially available (211) B-oriented GaAs substrates. Molecular beam epitaxial growth of CdTe buffer layers and subsequent HgCdTe absorber layers are performed in separate vacuum-interconnected chambers. The importance of optimization of the CdTe buffer layer growth for high-quality HgCdTe is detailed through surface morphology and x-ray studies. x-Ray diffraction rocking-curve full-width at half-maximum values as low as 52 arcsec have been obtained. Long-wave infrared Hg1−x Cd x Te (x = 0.23) has been grown on these buffer layers, producing cross-hatch-dominated surface morphologies, with dislocation densities as low as ∼3 × 106 cm−2. We have also obtained (for optimized layers), 80-K Hall-effect n-type carrier concentration and electron mobility of approximately ~1.5 × 1015 cm−3 and 1 × 105 cm2 V−1 s−1, respectively. Finally, we briefly compare GaAs and Si in light of our preliminary investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Sporken, S. Sivananthan, K.K. Mahavadi, G. Monfroy, M. Boukerche, and J.P. Faurie, Appl. Phys. Lett. 55, 1879 (1989).

    Article  CAS  Google Scholar 

  2. N.K. Dhar, P.R. Boyd, M. Martinka, J.H. Dinan, L.A. Almeida, and N. Goldsman, J. Electron. Mater. 29, 748 (2000).

    Article  CAS  Google Scholar 

  3. M. Carmody, J.G. Pasko, D. Edwall, R. Bailey, J. Arias, M. Groenert, L.A. Almeida, J.H. Dinan, Y. Chen, G. Brill, and N.K. Dhar, J. Electron. Mater. 35, 1417 (2006).

    Article  CAS  Google Scholar 

  4. L.A. Almeida, L. Hirsch, M. Martinka, P.R. Boyd, and J.H. Dinan, J. Electron. Mater. 30, 608 (2001).

    Article  CAS  Google Scholar 

  5. J.D. Benson, R.N. Jacobs, J.K. Markunas, M. Jaime-Vasquez, P.J. Smith, L.A. Almeida, M. Martinka, M.F. Vilela, and U. Lee, J. Electron. Mater. 37, 1231 (2008).

    Article  CAS  Google Scholar 

  6. J.P. Zanatta, G. Badano, P. Ballet, C. Largeron, J. Baylet, O. Gravrand, J. Rothman, P. Castelein, J.P. Chamonal, A. Million, G. Destefanis, S. Mibord, E. Brochier, and P. Costa, J. Electron. Mater. 35, 1231 (2006).

    Article  CAS  Google Scholar 

  7. M. Krishnamurthy, P.M. Petroff, and J.M. Arias, Appl. Phys. Lett. 73, 7952 (1993).

    CAS  Google Scholar 

  8. T.J. de Lyon, R.D. Rajavel, B.Z. Nosho, S. Terterian, M.L. Beliciu, P.R. Patterson, D.T. Chang, M.F. Boag-O’Brien, B.T. Holden, R.N. Jacobs, and J.D. Benson, J. Electron. Mater. 39, 1058 (2010).

    Google Scholar 

  9. S.M. Johnson, D.R. Rhiger, J.P. Rosenbeck, J.M. Peterson, S.M. Taylor, and M.E. Boyd, J. Vac. Sci. Technol. B10, 1499 (1992).

    Google Scholar 

  10. R.N. Jacobs, J. Markunas, J. Pellegrino, L.A. Almeida, M. Groenert, M. Jaime-Vasquez, N. Mahadik, C. Andrews, and S.B. Qadri, J. Cryst. Growth 310, 2960 (2008).

    Article  CAS  Google Scholar 

  11. R.N. Jacobs, L.A. Almeida, J. Markunas, J. Pellegrino, M. Groenert, M. Jaime-Vasquez, N. Mahadik, C. Andrews, S.B. Qadri, T. Lee, and M. Kim. CS MANTECH Conference, April 14–17, 2008, Chicago, Illinois, USA.

  12. M. Jaime-Vasquez, M. Martinka, A.J. Stoltz, R.N. Jacobs, J.D. Benson, L.A. Almeida, and J.K. Markunas, J. Electron. Mater. 37, 1247 (2008).

    Article  CAS  Google Scholar 

  13. P. Abbott, L. Pillans, P. Knowles, and R.K. McEwen, Proc. SPIE 7660, 766035 (2010).

    Article  Google Scholar 

  14. C. Lenon, A.E. Brown, R.N. Jacobs, L.A. Almeida, J.K. Markunas, J. Arias, and J. Pellegrino, J. Electron. Mater. (in this issue).

  15. M. Jaime-Vasquez, R.N. Jacobs, L.A. Almeida, J.D. Benson, J.M. Arias, and J.Pellegrino, J. Electron. Mater. (in this issue).

  16. J. Amon, J. Härtwig, W. Ludwig, and G. Müller, J. Cryst. Growth 198–199, 367 (1999).

    Article  Google Scholar 

  17. K. Nakagawa, K. Maeda, and S. Takeuchi, Appl. Phys. Lett. 34, 574 (1979).

    Article  CAS  Google Scholar 

  18. L.O. Bubulac, W.E. Tennant, D.D. Edwall, E.R. Gertner, and J.C. Robinson, J. Vac. Sci. Technol. A 3, 163 (1985).

    Article  CAS  Google Scholar 

  19. M. Martinka, L.A. Almeida, J.D. Benson, and J.H. Dinan, J. Electron. Mater. 30, 632 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R.N. Jacobs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacobs, R., Nozaki, C., Almeida, L. et al. Development of MBE II–VI Epilayers on GaAs(211)B. J. Electron. Mater. 41, 2707–2713 (2012). https://doi.org/10.1007/s11664-012-2218-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-012-2218-z

Keywords

Navigation