Skip to main content
Log in

Microbial degradation of chloroethenes: a review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Contamination by chloroethenes has a severe negative effect on both the environment and human health. This has prompted intensive remediation activity in recent years, along with research into the efficacy of natural microbial communities for degrading toxic chloroethenes into less harmful compounds. Microbial degradation of chloroethenes can take place either through anaerobic organohalide respiration, where chloroethenes serve as electron acceptors; anaerobic and aerobic metabolic degradation, where chloroethenes are used as electron donors; or anaerobic and aerobic co-metabolic degradation, with chloroethene degradation occurring as a by-product during microbial metabolism of other growth substrates, without energy or carbon benefit. Recent research has focused on optimising these natural processes to serve as effective bioremediation technologies, with particular emphasis on (a) the diversity and role of bacterial groups involved in dechlorination microbial processes, and (b) detection of bacterial enzymes and genes connected with dehalogenation activity. In this review, we summarise the different mechanisms of chloroethene bacterial degradation suitable for bioremediation and provide a list of dechlorinating bacteria. We also provide an up-to-date summary of primers available for detecting functional genes in anaerobic and aerobic bacteria degrading chloroethenes metabolically or co-metabolically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abe Y, Aravena R, Zopfi J, Parker B, Hunkeler D (2009a) Evaluating the fate of chlorinated ethenes in streambed sediments by combining stable isotope, geochemical and microbial methods. J Contam Hydrol 107:10–21

    Article  CAS  Google Scholar 

  • Abe Y, Aravena R, Zopfi J, Shouakar-Stash O, Cox E, Roberts JD et al (2009b) Carbon and chlorine isotope fractionation during aerobic oxidation and reductive dechlorination of vinyl chloride and cis-1, 2-dichloroethene. Environ Sci Technol 43:101–107

    Article  CAS  Google Scholar 

  • Abrahamsson K, Ekdahl A, Collen J, Pedersen M (1995) Marine algae-a source of trichloroethylene and perchloroethylene. Limnol Oceanogr 40:1321–1326

    Article  CAS  Google Scholar 

  • Aeppli C, Hofstetter TB, Amaral HI, Kipfer R, Schwarzenbach RP, Berg M (2010) Quantifying in situ transformation rates of chlorinated ethenes by combining compound-specific stable isotope analysis, groundwater dating, and carbon isotope mass balances. Environ Sci Technol 44:3705–3711. doi:10.1021/es903895b

    Article  CAS  Google Scholar 

  • Allen JR, Clark DD, Krum JG, Ensign SA (1999) A role for coenzyme M (2-mercaptoethanesulfonic acid) in a bacterial pathway of aliphatic epoxide carboxylation. Proc Natl Acad Sci U S A 96:8432–8437

    Article  CAS  Google Scholar 

  • Alvarez-Cohen L, McCarty PL (1991) Effects of toxicity, aeration, and reductant supply on trichloroethylene transformation by a mixed methanotrophic culture. Appl Environ Microbiol 57:228–235

    CAS  Google Scholar 

  • Alvarez-Cohen L, Speitel G Jr (2001) Kinetics of aerobic cometabolism of chlorinated solvents. Biodegradation 12:105–126. doi:10.1023/A:1012075322466

    Article  CAS  Google Scholar 

  • Alvarez-Zaldívar P, Centler F, Maier U, Thullner M, Imfeld G (2016) Biogeochemical modelling of in situ biodegradation and stable isotope fractionation of intermediate chloroethenes in a horizontal subsurface flow wetland. Ecol Eng 90:170–179

    Article  Google Scholar 

  • Arciero D, Vannelli T, Logan M, Hopper AB (1989) Degradation of trichloroethylene by the ammonia-oxidizing bacterium Nitrosomonas europaea. Biochem Biophys Res Commun 159:640–643

    Article  CAS  Google Scholar 

  • Arp DJ, Yeager CM, Hyman MR (2001) Molecular and cellular fundamentals of aerobic cometabolism of trichloroethylene. Biodegradation 12:81–103

    Article  CAS  Google Scholar 

  • Aulenta F, Gossett JM, Papini MP, Rossetti S, Majone M (2005) Comparative study of methanol, butyrate, and hydrogen as electron donors for long-term dechlorination of tetrachloroethene in mixed anerobic cultures. Biotechnol Bioeng 91:743–753. doi:10.1002/bit.20569

    Article  CAS  Google Scholar 

  • Aulenta F, Pera A, Rossetti S, Petrangeli Papini M, Majone M (2007) Relevance of side reactions in anaerobic reductive dechlorination microcosms amended with different electron donors. Water Res 41:27–38. doi:10.1016/j.watres.2006.09.019

    Article  CAS  Google Scholar 

  • Aulenta F, Beccari M, Majone M, Papini MP, Tandoi V (2008) Competition for H2 between sulfate reduction and dechlorination in butyrate-fed anaerobic cultures. Process Biochem 43:161–168. doi:10.1016/j.procbio.2007.11.006

    Article  CAS  Google Scholar 

  • Aziz CE, Wymore RA, Steffan RJ (2013) Bioaugumentation considerations. In: Stroo HF, Leeson A, Ward CH (eds) Bioaugumntation for groundwater remediation. Springer, New York, pp 141–171 360 p

    Chapter  Google Scholar 

  • Azizian MF, Marshall IP, Behrens S, Spormann AM, Semprini L (2010) Comparison of lactate, formate, and propionate as hydrogen donors for the reductive dehalogenation of trichloroethene in a continuous-flow column. J Contam Hydrol 113:77–92. doi:10.1016/j.jconhyd.2010.02.004

    Article  CAS  Google Scholar 

  • Bælum J, Chambon JC, Scheutz C, Binning PJ, Laier T, Bjerg PL, Jacobsen CS (2013) A conceptual model linking functional gene expression and reductive dechlorination rates of chlorinated ethenes in clay rich groundwater sediment. Water Res 47:2467–2478

    Article  CAS  Google Scholar 

  • Ballapragada BS, Stensel HD, Puhakka JA, Ferguson JF (1997) Effect of hydrogen on reductive Dechlorination of chlorinated Ethenes. Environ Sci Technol 31:1728–1734. doi:10.1021/es9606539

    Article  CAS  Google Scholar 

  • Beeman RE, Bleckmann CA (2002) Sequential anaerobic–aerobic treatment of an aquifer contaminated by halogenated organics: field results. J Contam Hydrol 57:147–159

    Article  CAS  Google Scholar 

  • Behrens S, Azizian MF, McMurdie PJ, Sabalowsky A, Dolan ME, Semprini L, Spormann AM (2008) Monitoring abundance and expression of “Dehalococcoides” species chloroethene-reductive dehalogenases in a tetrachloroethene-dechlorinating flow column. Appl Environ Microbiol 74:5695–5703

    Article  CAS  Google Scholar 

  • Berggren DR, Marshall IP, Azizian MF, Spormann AM, Semprini L (2013) Effects of sulfate reduction on the bacterial community and kinetic parameters of a dechlorinating culture under chemostat growth conditions. Environ Sci Technol 47:1879–1886

    Article  CAS  Google Scholar 

  • Bhowmik A, Ishimura K, Nakamura K, Takamizawa K (2012) Degradation activity of Clostridium species DC-1 in the cis-1, 2-dichloroethylene contaminated site in the presence of indigenous microorganisms and Escherichia coli. J Mater Cycles Waste 14:212–219

    Article  CAS  Google Scholar 

  • Bourg AC, Mouvet C, Lerner DN (1992) A review of the attenuation of trichloroethylene in soils and aquifers. Q J Eng Geol Hydroge 25:359–370. doi:10.1144/gsl.qjeg.1992.025.04.10

    Article  Google Scholar 

  • Bourne DG, McDonald IR, Murrell JC (2001) Comparison of pmoA PCR primer sets as tools for investigating methanotroph diversity in three Danish soils. Appl Environ Microbiol 67:3802–3809

    Article  CAS  Google Scholar 

  • Bradley PM (2003) History and ecology of chloroethene biodegradation: A review. Bioremediat J 7:81–109. doi:10.1080/713607980

    Article  CAS  Google Scholar 

  • Bradley PM, Chapelle FH (1998) Microbial mineralization of VC and DCE under different terminal electron accepting conditions. Anaerobe 4:81–87

    Article  CAS  Google Scholar 

  • Bradley PM, Chapelle FH, Lovley DR (1998a) Humic acids as electron acceptors for anaerobic microbial oxidation of vinyl chloride and dichloroethene. Appl Environ Microbiol 64:3102–3105

    CAS  Google Scholar 

  • Bradley PM, Landmeyer JE, Dinicola RS (1998b) Anaerobic oxidation of [1, 2-14C] dichloroethene under Mn (IV)-reducing conditions. Appl Environ Microbiol 64:1560–1562

    CAS  Google Scholar 

  • Chambon JC, Bjerg PL, Scheutz C, Baelum J, Jakobsen R, Binning PJ (2013) Review of reactive kinetic models describing reductive dechlorination of chlorinated ethenes in soil and groundwater. Biotechnol Bioeng 110:1–23. doi:10.1002/bit.24714

    Article  CAS  Google Scholar 

  • Chang HL, Alvarez-Cohen L (1995) Transformation capacities of chlorinated organics by mixed cultures enriched on methane, propane, toluene, or phenol. Biotechnol Bioeng 45:440–449. doi:10.1002/bit.260450509

    Article  CAS  Google Scholar 

  • Chang Y, Okeke B, Hatsu M, Takamizawa K (2001) In vitro dehalogenation of tetrachloroethylene (PCE) by cell-free extracts of Clostridium bifermentans DPH-1. Bioresour Technol 78:141–147

    Article  CAS  Google Scholar 

  • Chang YC, Ikeutsu K, Toyama T, Choi D, Kikuchi S (2011) Isolation and characterization of tetrachloroethylene- and cis-1,2-dichloroethylene-dechlorinating Propionibacteria. J Ind Microbiol Biotechnol 38:1667–1677. doi:10.1007/s10295-011-0956-1

    Article  CAS  Google Scholar 

  • Chen M, Abriola LM, Amos BK, Suchomel EJ, Pennell KD, Löffler FE, Christ JA (2013) Microbially enhanced dissolution and reductive dechlorination of PCE by a mixed culture: Model validation and sensitivity analysis. J Contam Hydrol 151:117–130. doi:10.1016/j.jconhyd.2013.05.005

    Article  CAS  Google Scholar 

  • Cheng D, He J (2009) Isolation and characterization of “Dehalococcoides” sp. strain MB, which dechlorinates tetrachloroethene to trans-1, 2-dichloroethene. Appl Environ Microbiol 75:5910–5918

    Article  CAS  Google Scholar 

  • Chow WL, Cheng D, Wang S, He J (2010) Identification and transcriptional analysis of trans-DCE-producing reductive dehalogenases in Dehalococcoides species. ISME J 4:1020–1030. doi:10.1038/ismej.2010.27

    Article  Google Scholar 

  • Cichocka D, Nikolausz M, Haest PJ, Nijenhuis I (2010) Tetrachloroethene conversion to ethene by a Dehalococcoides-containing enrichment culture from Bitterfeld. FEMS Microbiol Ecol 72:297–310

    Article  CAS  Google Scholar 

  • Clement TP, Johnson CD, Sun Y, Klecka GM, Bartlett C (2000) Natural attenuation of chlorinated ethene compounds: model development and field-scale application at the Dover site. J Contam Hydrol 42:113–140. doi:10.1016/S0169-7722(99)00098-4

    Article  CAS  Google Scholar 

  • Coleman NV (2015) Primers: functional genes for aerobic chlorinated hydrocarbon-degrading microbes. In. Humana Press, Totowa, pp 1–35. doi:10.1007/8623_2015_91

    Google Scholar 

  • Coleman NV, Spain JC (2003a) Distribution of the coenzyme M pathway of epoxide metabolism among ethene- and vinyl chloride-degrading Mycobacterium strains. Appl Environ Microbiol 69:6041–6046

    Article  CAS  Google Scholar 

  • Coleman NV, Spain JC (2003b) Epoxyalkane: coenzyme M transferase in the ethene and vinyl chloride biodegradation pathways of Mycobacterium strain JS60. J Bacteriol 185:5536–5545

    Article  CAS  Google Scholar 

  • Coleman NV, Mattes TE, Gossett JM, Spain JC (2002a) Biodegradation of cis-dichloroethene as the sole carbon source by a β-proteobacterium. Appl Environ Microbiol 68:2726–2730

    Article  CAS  Google Scholar 

  • Coleman NV, Mattes TE, Gossett JM, Spain JC (2002b) Phylogenetic and kinetic diversity of aerobic vinyl chloride-assimilating bacteria from contaminated sites. Appl Environ Microbiol 68:6162–6171. doi:10.1128/AEM.68.12.6162-6171.2002

    Article  CAS  Google Scholar 

  • Coleman NV, Bui NB, Holmes AJ (2006) Soluble di-iron monooxygenase gene diversity in soils, sediments and ethene enrichments. Environ Microbiol 8:1228–1239

    Article  CAS  Google Scholar 

  • Coleman NV, Wilson NL, Barry K et al (2011) Genome sequence of the ethene-and vinyl chloride-oxidizing actinomycete Nocardioides sp. strain JS614. J Bacteriol 193:3399–3400

    Article  CAS  Google Scholar 

  • Corapcioglu MY, Sung K, Kim J (2004) Parameter determination of sequential reductive dehalogenation reactions of chlorinated hydrocarbons. Transport Porous Med 55:169–182. doi:10.1023/B:TIPM.0000010677.47179.f1

    Article  Google Scholar 

  • Costello AM, Lidstrom ME (1999) Molecular characterization of functional and phylogenetic genes from natural populations of methanotrophs in lake sediments. Appl Environ Microbiol 65:5066–5074

    CAS  Google Scholar 

  • Cupples AM, Spormann AM, McCarty PL (2003) Growth of a Dehalococcoides-like microorganism on vinyl chloride and cis-dichloroethene as electron acceptors as determined by competitive PCR. Appl Environ Microbiol 69:953–959

    Article  CAS  Google Scholar 

  • Dabrock B, Riedel J, Bertram J, Gottschalk G (1992) Isopropylbenzene (cumene)—a new substrate for the isolation of trichloroethene-degrading bacteria. Arch Microbiol 158:9–13

    Article  CAS  Google Scholar 

  • Danko AS, Luo M, Bagwell CE, Brigmon RL, Freedman DL (2004) Involvement of linear plasmids in aerobic biodegradation of vinyl chloride. Appl Environ Microbiol 70:6092–6097

    Article  CAS  Google Scholar 

  • Davis JW, Carpenter CL (1990) Aerobic biodegradation of vinyl chloride in groundwater samples. Appl Environ Microbiol 56:3878–3880

    CAS  Google Scholar 

  • De Bruin WP, Kotterman M, Posthumus MA, Schraa G, Zehnder A (1992) Complete biological reductive transformation of tetrachloroethene to ethane. Appl Environ Microbiol 58:1996–2000

    CAS  Google Scholar 

  • Devlin JF, Katic D, Barker JF (2004) In situ sequenced bioremediation of mixed contaminants in groundwater. J Contam Hydrol 69:233–261. doi:10.1016/s0169-7722(03)00156-6

    Article  CAS  Google Scholar 

  • DeWeerd KA, Mandelco L, Tanner RS, Woese CR, Suflita JM (1990) Desulfomonile tiedjei gen. nov. and sp. nov., a novel anaerobic, dehalogenating, sulfate-reducing bacterium. Arch Microbiol 154:23–30

    Article  CAS  Google Scholar 

  • Dey K, Roy P (2009) Degradation of trichloroethylene by Bacillus sp.: isolation strategy, strain characteristics, and cell immobilization. Curr Microbiol 59:256–260

    Article  CAS  Google Scholar 

  • DiStefano TD (1999) The effect of tetrachloroethene on biological dechlorination of vinyl chloride: potential implication for natural bioattenuation. Water Res 33:1688–1694. doi:10.1016/S0043-1354(98)00374-1

    Article  CAS  Google Scholar 

  • Dolinová I, Czinnerová M, Dvořák L, Stejskal V, Ševců A, Černík M (2016) Dynamics of organohalide-respiring bacteria and their genes following in-situ chemical oxidation of chlorinated ethenes and biostimulation. Chemosphere 157:276–285. doi:10.1016/j.chemosphere.2016.05.030

    Article  CAS  Google Scholar 

  • Doughty DM, Sayavedra-Soto LA, Arp DJ, Bottomley PJ (2005) Effects of dichloroethene isomers on the induction and activity of butane monooxygenase in the alkane-oxidizing bacterium “Pseudomonas butanovora”. Appl Environ Microbiol 71:6054–6059. doi:10.1128/aem.71.10.6054-6059.2005

    Article  CAS  Google Scholar 

  • Duhamel M, Edwards EA (2006) Microbial composition of chlorinated ethene-degrading cultures dominated by Dehalococcoides. FEMS Microbiol Ecol 58:538–549. doi:10.1111/j.1574-6941.2006.00191.x

    Article  CAS  Google Scholar 

  • Egli C, Scholtz R, Cook AM, Leisinger T (1987) Anaerobic dechlorination of tetrachloromethane and 1,2-dichloroethane to degradable products by pure cultures of Desulfobacterium sp. and Methanobacterium sp. FEMS Microbiol Lett 43:257–261. doi:10.1111/j.1574-6968.1987.tb02154.x

    Article  CAS  Google Scholar 

  • Egli C, Tschan T, Scholtz R, Cook AM, Leisinger T (1988) Transformation of tetrachloromethane to dichloromethane and carbon dioxide by Acetobacterium woodii. Appl Environ Microbiol 54:2819–2824

    CAS  Google Scholar 

  • Elango VK, Liggenstoffer AS, Fathepure BZ (2006) Biodegradation of vinyl chloride and cis-dichloroethene by a Ralstonia sp. strain TRW-1. Appl Microbiol Biotechnol 72:1270–1275

    Article  CAS  Google Scholar 

  • Ellis DE, Lutz EJ, Odom JM et al (2000) Bioaugmentation for accelerated in situ anaerobic bioremediation. Environ Sci Technol 34:2254–2260

    Article  CAS  Google Scholar 

  • Ely RL, Williamson KJ, Hyman MR, Arp DJ (1997) Cometabolism of chlorinated solvents by nitrifying bacteria: kinetics, substrate interactions, toxicity effects, and bacterial response. Biotechnol Bioeng 54:520–534. doi:10.1002/(sici)1097-0290(19970620)54:6<520::aid-bit3>3.0.co;2-l

    Article  CAS  Google Scholar 

  • Ensign S, Hyman M, Arp D (1992) Cometabolic degradation of chlorinated alkenes by alkene monooxygenase in a propylene-grown Xanthobacter strain. Appl Environ Microbiol 58:3038–3046

    CAS  Google Scholar 

  • ESTCP (2011) Guidance Protocol: Application of Nucleic Acid-Based Tools for Monitoring Monitored Natural Attenuation (MNA), Biostimulation and Bioaugumentation at Chlorinated Solvents Sites. Environmental Security Technology Certification Program project ER-200518, May 2011

  • ESTCP (2015) Development and validation of Quantitative Framework and Management Expectation Tool for the Selection of Bioremediation Approaches (Monitored Natural Attenuation (MNA), Biostimulation and/or Bioaugumentation at Chlorinated Solvents Sites. Final Report. Environmental Security Technology Certification Program project ER-201129, December 2015

  • Falta RW (2008) Methodology for comparing source and plume remediation alternatives. Ground Water 46:272–285. doi:10.1111/j.1745-6584.2007.00416.x

    Article  CAS  Google Scholar 

  • Fathepure BZ, Boyd SA (1988) Reductive dechlorination of perchloroethylene and the role of methanogens. FEMS Microbiol Lett 49:149–156

    Article  CAS  Google Scholar 

  • Fathepure B, Vogel TM (1991) Complete degradation of polychlorinated hydrocarbons by a two-stage biofilm reactor. Appl Environ Microbiol 57:3418–3422

    CAS  Google Scholar 

  • Fathepure BZ, Elango VK, Singh H, Bruner MA (2005) Bioaugmentation potential of a vinyl chloride-assimilating Mycobacterium sp., isolated from a chloroethene-contaminated aquifer. FEMS Microbiol Lett 248:227–234. doi:10.1016/j.femsle.2005.05.033

    Article  CAS  Google Scholar 

  • Fennell DE, Gossett JM, Zinder SH (1997) Comparison of butyric acid, ethanol, lactic acid, and propionic acid as hydrogen donors for the reductive dechlorination of tetrachloroethene. Environ Sci Technol 31:918–926. doi:10.1021/es960756r

    Article  CAS  Google Scholar 

  • Fennell DE, Carroll AB, Gossett JM, Zinder SH (2001) Assessment of indigenous reductive dechlorinating potential at a TCE-contaminated site using microcosms, polymerase chain reaction analysis, and site data. Environ Sci Technol 35:1830–1839. doi:10.1021/es0016203

    Article  CAS  Google Scholar 

  • Fetzner S (1998) Bacterial dehalogenation. Appl Microbiol Biotechnol 50:633–657. doi:10.1007/s002530051346

    Article  CAS  Google Scholar 

  • Findlay M, Smoler DF, Fogel S, Mattes TE (2016) Aerobic vinyl chloride metabolism in groundwater microcosms by methanotrophic and etheneotrophic bacteria. Environ Sci Technol 50:3617–3625

    Article  CAS  Google Scholar 

  • Finneran KT, Forbush HM, VanPraagh CVG, Lovley DR (2002) Desulfitobacterium metallireducens sp. nov., an anaerobic bacterium that couples growth to the reduction of metals and humic acids as well as chlorinated compounds. Int J Syst Evol Microbiol 52:1929–1935

    CAS  Google Scholar 

  • Fletcher KE, Ritalahti KM, Pennell KD, Takamizawa K, Löffler FE (2008) Resolution of culture Clostridium bifermentans DPH-1 into two populations, a Clostridium sp. and tetrachloroethene-dechlorinating Desulfitobacterium hafniense strain JH1. Appl Environ Microbiol 74:6141–6143

    Article  CAS  Google Scholar 

  • Fox BG, Borneman JG, Wackett LP, Lipscomb JD (1990) Haloalkene oxidation by the soluble methane monooxygenase from Methylosinus trichosporium OB3b: mechanistic and environmental implications. Biochemistry 29:6419–6427

    Article  CAS  Google Scholar 

  • Frascari D, Pinelli D, Nocentini M et al (2006) Long-term aerobic cometabolism of a chlorinated solvent mixture by vinyl chloride-, methane- and propane-utilizing biomasses. J Hazard Mater 138:29–39. doi:10.1016/j.jhazmat.2006.05.009

    Article  CAS  Google Scholar 

  • Frascari D, Pinelli D, Nocentini M, Baleani E, Cappelletti M, Fedi S (2008) A kinetic study of chlorinated solvent cometabolic biodegradation by propane-grown Rhodococcus sp. PB1. Biochem Eng J 42:139–147. doi:10.1016/j.bej.2008.06.011

    Article  CAS  Google Scholar 

  • Frascari D, Fraraccio S, Nocentini M, Pinelli D (2013) Aerobic/anaerobic/aerobic sequenced biodegradation of a mixture of chlorinated ethenes, ethanes and methanes in batch bioreactors. Bioresour Technol 128:479–486. doi:10.1016/j.biortech.2012.10.026

    Article  CAS  Google Scholar 

  • Frascari D, Zanaroli G, Danko AS (2015) In situ aerobic cometabolism of chlorinated solvents: a review. J Hazard Mater 283:382–399. doi:10.1016/j.jhazmat.2014.09.041

    Article  CAS  Google Scholar 

  • Freedman DL, Herz SD (1996) Use of ethylene and ethane as primary substrates for aerobic cometabolism of vinyl chloride. Water Environ Res 68:320–328

    Article  Google Scholar 

  • Fries MR, Forney LJ, Tiedje JM (1997) Phenol- and toluene-degrading microbial populations from an aquifer in which successful trichloroethene cometabolism occurred. Appl Environ Microbiol 63:1523–1530

    CAS  Google Scholar 

  • Fullerton H, Rogers R, Freedman DL, Zinder SH (2014) Isolation of an aerobic vinyl chloride oxidizer from anaerobic groundwater. Biodegradation 25:893–901. doi:10.1007/s10532-014-9708-z

    Article  CAS  Google Scholar 

  • Fung JM, Morris RM, Adrian L, Zinder SH (2007) Expression of reductive dehalogenase genes in Dehalococcoides ethenogenes strain 195 growing on tetrachloroethene, trichloroethene, or 2,3-dichlorophenol. Appl Environ Microbiol 73:4439–4445. doi:10.1128/aem.00215-07

    Article  CAS  Google Scholar 

  • Futamata H, Harayama S, Watanabe K (2001a) Diversity in kinetics of trichloroethylene-degrading activities exhibited by phenol-degrading bacteria. Appl Microbiol Biotechnol 55:248–253

    Article  CAS  Google Scholar 

  • Futamata H, Harayama S, Watanabe K (2001b) Group-specific monitoring of phenol hydroxylase genes for a functional assessment of phenol-stimulated trichloroethylene bioremediation. Appl Environ Microbiol 67:4671–4677

    Article  CAS  Google Scholar 

  • Futamata H, Nagano Y, Watanabe K, Hiraishi A (2005) Unique kinetic properties of phenol-degrading Variovorax strains responsible for efficient trichloroethylene degradation in a chemostat enrichment culture. Appl Environ Microbiol 71:904–911

    Article  CAS  Google Scholar 

  • Futamata H, Kaiya S, Sugawara M, Hiraishi A (2009) Phylogenetic and transcriptional analyses of a Tetrachloroethene-dechlorinating "Dehalococcoides" enrichment culture TUT2264 and its reductive-dehalogenase genes. Microbes Environ / JSME 24:330–337

    Article  Google Scholar 

  • Gerritse J, Renard V, Gottschal J, Visser J (1995) Complete degradation of tetrachloroethene by combining anaerobic dechlorinating and aerobic methanotrophic enrichment cultures. Appl Microbiol Biotechnol 43:920–928

    Article  CAS  Google Scholar 

  • Gerritse J, Renard V, Gomes TP, Lawson PA, Collins MD, Gottschal JC (1996) Desulfitobacterium sp. strain PCE1, an anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene or ortho-chlorinated phenols. Arch Microbiol 165:132–140

    Article  CAS  Google Scholar 

  • Gerritse J, Drzyzga O, Kloetstra G et al (1999) Influence of different electron donors and acceptors on dehalorespiration of tetrachloroethene by Desulfitobacterium frappieri TCE1. Appl Environ Microbiol 65:5212–5221

    CAS  Google Scholar 

  • Giddings CGS, Liu F, Gossett JM (2010) Microcosm assessment of Polaromonas sp. JS666 as a Bioaugmentation agent for degradation of cis-1,2-dichloroethene in aerobic, subsurface environments. Ground Water Monit Remediat 30:106–113. doi:10.1111/j.1745-6592.2010.01283.x

    Article  CAS  Google Scholar 

  • Gossett JM (2010) Sustained aerobic oxidation of vinyl chloride at low oxygen concentrations. Environ Sci Technol 44:1405–1411. doi:10.1021/es9033974

    Article  CAS  Google Scholar 

  • Halsey KH, Sayavedra-Soto LA, Bottomley PJ, Arp DJ (2005) Trichloroethylene degradation by butane-oxidizing bacteria causes a spectrum of toxic effects. Appl Microbiol Biotechnol 68:794–801. doi:10.1007/s00253-005-1944-z

    Article  CAS  Google Scholar 

  • Halsey KH, Doughty DM, Sayavedra-Soto LA, Bottomley PJ, Arp DJ (2007) Evidence for modified mechanisms of chloroethene oxidation in Pseudomonas butanovora mutants containing single amino acid substitutions in the hydroxylase α-subunit of butane monooxygenase. J Bacteriol 189:5068–5074. doi:10.1128/jb.00189-07

    Article  CAS  Google Scholar 

  • Hamamura N, Page C, Long T, Semprini L, Arp DJ (1997) Chloroform cometabolism by butane-grown CF8, Pseudomonas butanovora, and Mycobacterium vaccae JOB5 and methane-grown Methylosinus trichosporium OB3b. Appl Environ Microbiol 63:3607–3613

    CAS  Google Scholar 

  • Hanada S, Shigematsu T, Shibuya K et al (1998) Phylogenetic analysis of trichloroethylene-degrading bacteria newly isolated from soil polluted with this contaminant. J Ferment Bioeng 86:539–544

    Article  CAS  Google Scholar 

  • Harker AR, Kim Y (1990) Trichloroethylene degradation by two independent aromatic-degrading pathways in Alcaligenes eutrophus JMP134. Appl Environ Microbiol 56:1179–1181

    CAS  Google Scholar 

  • Harkness M, Fisher A, Lee MD et al (2012) Use of statistical tools to evaluate the reductive dechlorination of high levels of TCE in microcosm studies. J Contam Hydrol 131:100–118. doi:10.1016/j.jconhyd.2012.01.011

    Article  CAS  Google Scholar 

  • Harte PT, Smith TE, Williams JH, Degnan JR (2012) Time series geophysical monitoring of permanganate injections and in situ chemical oxidation of PCE, OU1 area, savage superfund site, Milford, NH, USA. J Contam Hydrol 132:58–74. doi:10.1016/j.jconhyd.2012.01.008

    Article  CAS  Google Scholar 

  • Hartmans S, De Bont JA (1992) Aerobic vinyl chloride metabolism in Mycobacterium aurum L1. Appl Environ Microbiol 58:1220–1226

    CAS  Google Scholar 

  • Hartmans S, De Bont J, Tramper J, Luyben KCA (1985) Bacterial degradation of vinyl chloride. Biotechnol Lett 7:383–388

    Article  CAS  Google Scholar 

  • Hartmans S, de Bont JA, Harder W (1989) Microbial metabolism of short-chain unsaturated hydrocarbons. FEMS Microbiol Rev 5:235–264

    CAS  Google Scholar 

  • Hata J, Miyata N, Kim E-S, Takamizawa K, Iwahori K (2004) Anaerobic degradation of cis-1, 2-dichloroethylene and vinyl chloride by Clostridium sp. strain DC1 isolated from landfill leachate sediment. J Biosci Bioeng 97:196–201

    Article  CAS  Google Scholar 

  • He J, Ritalahti KM, Yang K-L, Koenigsberg SS, Löffler FE (2003) Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium. Nature 424:62–65

    Article  CAS  Google Scholar 

  • He J, Sung Y, Krajmalnik-Brown R, Ritalahti KM, Loffler FE (2005) Isolation and characterization of Dehalococcoides sp. strain FL2, a trichloroethene (TCE)- and 1,2-dichloroethene-respiring anaerobe. Environ Microbiol 7:1442–1450. doi:10.1111/j.1462-2920.2005.00830.x

    Article  CAS  Google Scholar 

  • Heald S, Jenkins R (1994) Trichloroethylene removal and oxidation toxicity mediated by toluene dioxygenase of Pseudomonas putida. Appl Environ Microbiol 60:4634–4637

    CAS  Google Scholar 

  • Hendrickson ER, Payne JA, Young RM et al (2002) Molecular analysis of Dehalococcoides 16S ribosomal DNA from chloroethene-contaminated sites throughout North America and Europe. Appl Environ Microbiol 68:485–495

    Article  CAS  Google Scholar 

  • Henschler D (1994) Toxicity of chlorinated organic compounds: effects of the introduction of chlorine in organic molecules. Angew Chem Int Ed 33:1920–1935

    Article  Google Scholar 

  • Holliger C, Hahn D, Harmsen H et al (1998) Dehalobacter restrictus gen. nov. and sp. nov., a strictly anaerobic bacterium that reductively dechlorinates tetra-and trichloroethene in an anaerobic respiration. Arch Microbiol 169:313–321

    Article  CAS  Google Scholar 

  • Holmes AJ, Costello AM, Lidstrom ME, Murrell JC (1995) Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiol Lett 132:203–208

    Article  CAS  Google Scholar 

  • Holmes VF, He J, Lee PK, Alvarez-Cohen L (2006) Discrimination of multiple Dehalococcoides strains in a trichloroethene enrichment by quantification of their reductive dehalogenase genes. Appl Environ Microbiol 72:5877–5883

    Article  CAS  Google Scholar 

  • Hölscher T, Krajmalnik-Brown R, Ritalahti KM, von Wintzingerode F, Görisch H, Löffler FE, Adrian L (2004) Multiple nonidentical reductive-dehalogenase-homologous genes are common in Dehalococcoides. Appl Environ Microbiol 70:5290–5297. doi:10.1128/AEM.70.9.5290-5297.2004 http://www.nature.com/nature/journal/v517/n7535/abs/nature13901.html#supplementary-information

    Article  CAS  Google Scholar 

  • Hug LA, Maphosa F, Leys D, Loffler FE, Smidt H, Edwards EA, Adrian L (2013) Overview of organohalide-respiring bacteria and a proposal for a classification system for reductive dehalogenases. Philos Trans R Soc Lond B Biol Sci, Biological sciences 368:20120322. doi:10.1098/rstb.2012.0322

    Article  CAS  Google Scholar 

  • Hutchens E, Radajewski S, Dumont MG, McDonald IR, Murrell JC (2004) Analysis of methanotrophic bacteria in Movile cave by stable isotope probing. Environ Microbiol 6:111–120

    Article  CAS  Google Scholar 

  • van Hylckama Vlieg JE, Kingma J, van den Wijngaard AJ, Janssen DB (1998) A glutathione S-transferase with activity towards cis-1, 2-dichloroepoxyethane is involved in isoprene utilization by Rhodococcus sp. strain AD45. Appl Environ Microbiol 64:2800–2805

    Google Scholar 

  • van Hylckama JE, Vlieg JE, Janssen DB (2001) Formation and detoxification of reactive intermediates in the metabolism of chlorinated ethenes. J Biotech 85:81–102

    Article  Google Scholar 

  • Hyman MR, Russell SA, Ely RL, Williamson KJ, Arp DJ (1995) Inhibition, inactivation, and recovery of ammonia-oxidizing activity in cometabolism of trichloroethylene by Nitrosomonas europaea. Appl Environ Microbiol 61:1480–1487

    CAS  Google Scholar 

  • Imfeld G, Pieper H, Shani N et al (2011) Characterization of groundwater microbial communities, dechlorinating bacteria, and in situ biodegradation of chloroethenes along a vertical gradient. Water Air Soil Pollut 221:107–122. doi:10.1007/s11270-011-0774-0

    Article  CAS  Google Scholar 

  • Islam MA, Waller AS, Hug LA, Provart NJ, Edwards EA, Mahadevan R (2014) New insights into Dehalococcoides mccartyi metabolism from a reconstructed metabolic network-based systems-level analysis of D. mccartyi transcriptomes. PLoS One 9:e94808. doi:10.1371/journal.pone.0094808

    Article  CAS  Google Scholar 

  • Jablonski PE, Ferry JG (1992) Reductive dechlorination of trichloroethylene by the CO-reduced CO dehydrogenase enzyme complex from Methanosarcina thermophila. FEMS Microbiol Lett 96:55–59

    Article  CAS  Google Scholar 

  • Jennings LK, Chartrand MM, Lacrampe-Couloume G, Lollar BS, Spain JC, Gossett JM (2009) Proteomic and transcriptomic analyses reveal genes upregulated by cis-dichloroethene in Polaromonas sp. strain JS666. Appl Environ Microbiol 75:3733–3744. doi:10.1128/aem.00031-09

    Article  CAS  Google Scholar 

  • Jin YO, Mattes TE (2010) A quantitative PCR assay for aerobic, vinyl chloride- and ethene-assimilating microorganisms in groundwater. Environ Sci Technol 44:9036–9041. doi:10.1021/es102232m

    Article  CAS  Google Scholar 

  • Jin YO, Mattes TE (2011) Assessment and modification of degenerate qPCR primers that amplify functional genes from etheneotrophs and vinyl chloride-assimilators. Lett Appl Microbiol 53:576–580. doi:10.1111/j.1472-765X.2011.03144.x

    Article  CAS  Google Scholar 

  • Johnson DR, Lee PK, Holmes VF, Alvarez-Cohen L (2005a) An internal reference technique for accurately quantifying specific mRNAs by real-time PCR with application to the tceA reductive dehalogenase gene. Appl Environ Microbiol 71:3866–3871

    Article  CAS  Google Scholar 

  • Johnson DR, Lee PKH, Holmes VF, Fortin AC, Alvarez-Cohen L (2005b) Transcriptional expression of the tceA gene in a Dehalococcoides-containing microbial enrichment. Appl Environ Microbiol 71:7145–7151. doi:10.1128/AEM.71.11.7145-7151.2005

    Article  CAS  Google Scholar 

  • Jugder BE, Ertan H, Lee M, Manefield M, Marquis CP (2015) Reductive dehalogenases come of age in biological destruction of organohalides. Trends Biotechnol 33:595–610. doi:10.1016/j.tibtech.2015.07.004

    Article  CAS  Google Scholar 

  • Kaster AK, Mayer-Blackwell K, Pasarelli B, Spormann AM (2014) Single cell genomic study of Dehalococcoidetes species from deep-sea sediments of the Peruvian margin. ISME J 8:1831–1842. doi:10.1038/ismej.2014.24

    Article  CAS  Google Scholar 

  • Keppler F, Borchers R, Pracht J, Rheinberger S, Scholer HF (2002) Natural formation of vinyl chloride in the terrestrial environment. Environ Sci Technol 36:2479–2483

    Article  CAS  Google Scholar 

  • Kim Y, Arp DJ, Semprini L (2002) Kinetic and inhibition studies for the aerobic cometabolism of 1, 1, 1-trichloroethane, 1, 1-dichloroethylene, and 1, 1-dichloroethane by a butane-grown mixed culture. Biotechnol Bioeng 80:498–508

    Article  CAS  Google Scholar 

  • Kim E-S, Nomura I, Hasegawa Y, Takamizawa K (2006) Characterization of a newly isolatedcis-1, 2-dichloroethylene and aliphatic compound-degrading bacterium, Clostridium sp. strain KYT-1. Biotechnol Bioprocess Eng 11:553–556

    Article  CAS  Google Scholar 

  • Kim S, Bae W, Hwang J, Park J (2010) Aerobic TCE degradation by encapsulated toluene-oxidizing bacteria, Pseudomonas putida and Bacillus spp. Water Sci Technol 62:1991–1997. doi:10.2166/wst.2010.471

    Article  CAS  Google Scholar 

  • Kim S-H, Harzman C, Davis J, Hutcheson R, Broderick J, Marsh T, Tiedje J (2012) Genome sequence of Desulfitobacterium hafniense DCB-2, a gram-positive anaerobe capable of dehalogenation and metal reduction. BMC Microbiol 12:21

    Article  CAS  Google Scholar 

  • Koh S-C, Bowman JP, Sayler GS (1993) Soluble methane monooxygenase production and trichloroethylene degradation by a type I methanotroph, Methylomonas methanica 68-1. Appl Environ Microbiol 59:960–967

    CAS  Google Scholar 

  • Krajmalnik-Brown R, Hölscher T, Thomson IN, Saunders FM, Ritalahti KM, Löffler FE (2004) Genetic identification of a putative vinyl chloride reductase in Dehalococcoides sp. strain BAV1. Appl Environ Microbiol 70:6347–6351

    Article  CAS  Google Scholar 

  • Kranzioch I, Stoll C, Holbach A et al (2013) Dechlorination and organohalide-respiring bacteria dynamics in sediment samples of the Yangtze three gorges reservoir. Environ Sci Pollut Res Int 20:7046–7056. doi:10.1007/s11356-013-1545-9

    Article  CAS  Google Scholar 

  • Kranzioch I, Ganz S, Tiehm A (2015) Chloroethene degradation and expression of Dehalococcoides dehalogenase genes in cultures originating from Yangtze sediments. Environ Sci Pollut Res 22:3138–3148

    Article  CAS  Google Scholar 

  • Krumholz LR (1997) Desulfuromonas chloroethenica sp. nov. uses tetrachloroethylene and trichloroethylene as electron acceptors. Int J Syst Evol Microbiol 47:1262–1263

    CAS  Google Scholar 

  • Kruse T, Maillard J, Goodwin L et al (2013) Complete genome sequence of Dehalobacter restrictus PER-K23(T). Stand Genomic Sci 8:375–388. doi:10.4056/sigs.3787426

    Article  CAS  Google Scholar 

  • Kube M, Beck A, Zinder SH, Kuhl H, Reinhardt R, Adrian L (2005) Genome sequence of the chlorinated compound-respiring bacterium Dehalococcoides species strain CBDB1. Nat Biotechnol 23:1269–1273. doi:10.1038/nbt1131

    Article  CAS  Google Scholar 

  • Lacinová L, Černíková M, Hrabal J, Černík M (2013) In-situ combination of bio and abio remediation of chlorinated ethenes. Ecol Chem Eng S 20:463–473

    Google Scholar 

  • Lai Y, Becker JG (2013) Compounded effects of chlorinated ethene inhibition on ecological interactions and population abundance in a Dehalococcoides-Dehalobacter coculture. Environ Sci Technol 47:1518–1525

    CAS  Google Scholar 

  • Lee T, Tokunaga T, Suyama A, Furukawa K (2001) Efficient dechlorination of tetrachloroethylene in soil slurry by combined use of an anaerobic Desulfitobacterium sp. strain Y-51 and zero-valent iron. J Biosci Bioeng 92:453–458

    Article  CAS  Google Scholar 

  • Lee PK, Macbeth TW, Sorenson KS Jr, Deeb RA, Alvarez-Cohen L (2008) Quantifying genes and transcripts to assess the in situ physiology of "Dehalococcoides" spp. in a trichloroethene-contaminated groundwater site. Appl Environ Microbiol 74:2728–2739. doi:10.1128/aem.02199-07

    Article  CAS  Google Scholar 

  • Lee PK, Cheng D, Hu P et al (2011) Comparative genomics of two newly isolated Dehalococcoides strains and an enrichment using a genus microarray. ISME J 5:1014–1024

    Article  CAS  Google Scholar 

  • Lee PK, Cheng D, West KA, Alvarez-Cohen L, He J (2013) Isolation of two new Dehalococcoides mccartyi strains with dissimilar dechlorination functions and their characterization by comparative genomics via microarray analysis. Environ Microbiol 15:2293–2305. doi:10.1111/1462-2920.12099

    Article  CAS  Google Scholar 

  • Li J, de Toledo RA, Chung J, Shim H (2014a) Removal of mixture of cis-1, 2-dichloroethylene/trichloroethylene/benzene, toluene, ethylbenzene, and xylenes from contaminated soil by Pseudomonas plecoglossicida. J Chem Technol Biotechnol 89:1934–1940

    Article  CAS  Google Scholar 

  • Li Y, Li B, Wang C-P, Fan J-Z, Sun H-W (2014b) Aerobic degradation of trichloroethylene by co-metabolism using phenol and gasoline as growth substrates. Int J Mol Sci 15:9134

    Article  CAS  Google Scholar 

  • Loffler FE, Yan J, Ritalahti KM et al (2013) Dehalococcoides mccartyi gen. nov., sp. nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov. and family Dehalococcoidaceae fam. Nov., within the phylum Chloroflexi. Int J Syst Evol Microbiol 63:625–635. doi:10.1099/ijs.0.034926-0

    Article  CAS  Google Scholar 

  • Löffler FE, Ritalahti KM, Zinder SH (2013b) Dehalococcoides and reductive Dechlorination of chlorinated solvents. In: Stroo HF, Leeson A, Ward CH (eds) Bioaugumentation for groundwater remediation. Springer, New York, pp 89–89 360 p

    Google Scholar 

  • Lohner ST, Spormann AM (2013) Identification of a reductive tetrachloroethene dehalogenase in Shewanella sediminis. Philos Trans R Soc Lond Ser B Biol Sci 368:20120326

    Article  CAS  Google Scholar 

  • van Loo B, Kingma J, Arand M, Wubbolts MG, Janssen DB (2006) Diversity and biocatalytic potential of epoxide hydrolases identified by genome analysis. Appl Environ Microbiol 72:2905–2917. doi:10.1128/aem.72.4.2905-2917.2006

    Article  CAS  Google Scholar 

  • Luijten ML, de Weert J, Smidt H, Boschker HT, de Vos WM, Schraa G, Stams AJ (2003) Description of Sulfurospirillum halorespirans sp. nov., an anaerobic, tetrachloroethene-respiring bacterium, and transfer of Dehalospirillum multivorans to the genus Sulfurospirillum as Sulfurospirillum multivorans comb. nov. Int J Syst Evol Microbiol 53:787–793

    Article  CAS  Google Scholar 

  • Mac Nelly A, Kai M, Svatoš A, Diekert G, Schubert T (2014) Functional heterologous production of reductive dehalogenases from Desulfitobacterium hafniense strains. Appl Environ Microbiol 80:4313–4322

    Article  CAS  Google Scholar 

  • Magnuson JK, Stern RV, Gossett JM, Zinder SH, Burris DR (1998) Reductive dechlorination of tetrachloroethene to ethene by a two-component enzyme pathway. Appl Environ Microbiol 64:1270–1275

    CAS  Google Scholar 

  • Magnuson JK, Romine MF, Burris DR, Kingsley MT (2000) Trichloroethene reductive dehalogenase from Dehalococcoides ethenogenes: sequence of tceA and substrate range characterization. Appl Environ Microbiol 66:5141–5147

    Article  CAS  Google Scholar 

  • Maillard J, Schumacher W, Vazquez F, Regeard C, Hagen WR, Holliger C (2003) Characterization of the corrinoid iron-sulfur protein tetrachloroethene reductive dehalogenase of Dehalobacter restrictus. Appl Environ Microbiol 69:4628–4638

    Article  CAS  Google Scholar 

  • Maillard J, Charnay MP, Regeard C, Rohrbach-Brandt E, Rouzeau-Szynalski K, Rossi P, Holliger C (2011) Reductive dechlorination of tetrachloroethene by a stepwise catalysis of different organohalide respiring bacteria and reductive dehalogenases. Biodegradation 22:949–960. doi:10.1007/s10532-011-9454-4

    Article  CAS  Google Scholar 

  • Majone M, Verdini R, Aulenta F et al (2015) In situ groundwater and sediment bioremediation: barriers and perspectives at European contaminated sites. New Biotechnol 32:133–146. doi:10.1016/j.nbt.2014.02.011

    Article  CAS  Google Scholar 

  • Major DW, McMaster ML, Cox EE et al (2002) Field demonstration of successful bioaugmentation to achieve dechlorination of tetrachloroethene to ethene. Environ Sci Technol 36:5106–5116. doi:10.1021/es0255711

    Article  CAS  Google Scholar 

  • Maphosa F, de Vos WM, Smidt H (2010) Exploiting the ecogenomics toolbox for environmental diagnostics of organohalide-respiring bacteria. Trends Biotechnol 28:308–316. doi:10.1016/j.tibtech.2010.03.005

    Article  CAS  Google Scholar 

  • Maphosa F, van Passel MW, de Vos WM, Smidt H (2012) Metagenome analysis reveals yet unexplored reductive dechlorinating potential of Dehalobacter sp. E1 growing in co-culture with Sedimentibacter sp. Environ Microbiol Rep 4:604–616. doi:10.1111/j.1758-2229.2012.00376.x

    CAS  Google Scholar 

  • Marco-Urrea E, Nijenhuis I, Adrian L (2011) Transformation and carbon isotope fractionation of tetra-and trichloroethene to trans-dichloroethene by Dehalococcoides sp. strain CBDB1. Environ Sci Technol 45:1555–1562

    Article  CAS  Google Scholar 

  • Mattes TE, Coleman NV, Spain JC, Gossett JM (2005) Physiological and molecular genetic analyses of vinyl chloride and ethene biodegradation in Nocardioides sp. strain JS614. Arch Microbiol 183:95–106. doi:10.1007/s00203-004-0749-2

    Article  CAS  Google Scholar 

  • Mattes TE, Alexander AK, Richardson PM, Munk AC, Han CS, Stothard P, Coleman NV (2008) The genome of Polaromonas sp. strain JS666: Insights into the evolution of a hydrocarbon- and xenobiotic-degrading bacterium, and features of relevance to biotechnology. Appl Environ Microbiol 74:6405–6416. doi:10.1128/aem.00197-08

    Article  CAS  Google Scholar 

  • Mattes TE, Alexander AK, Coleman NV (2010) Aerobic biodegradation of the chloroethenes: pathways, enzymes, ecology, and evolution. FEMS Microbiol Rev 34:445–475. doi:10.1111/j.1574-6976.2010.00210.x

    Article  CAS  Google Scholar 

  • Maymó-Gatell X, Anguish T, Zinder SH (1999) Reductive dechlorination of chlorinated ethenes and 1, 2-dichloroethane by “Dehalococcoides ethenogenes” 195. Appl Environ Microbiol 65:3108–3113

    Google Scholar 

  • Maymó-Gatell X, Nijenhuis I, Zinder SH (2001) Reductive dechlorination of cis-1, 2-dichloroethene and vinyl chloride by “Dehalococcoides ethenogenes”. Environ Sci Technol 35:516–521

    Article  CAS  Google Scholar 

  • McClay K, Streger SH, Steffan RJ (1995) Induction of toluene oxidation activity in Pseudomonas mendocina KR1 and Pseudomonas sp. strain ENVPC5 by chlorinated solvents and alkanes. Appl Environ Microbiol 61:3479–3481

    CAS  Google Scholar 

  • McMurdie PJ, Behrens SF, Muller JA et al (2009) Localized plasticity in the streamlined genomes of vinyl chloride respiring Dehalococcoides. PLoS Genet 5:e1000714. doi:10.1371/journal.pgen.1000714

    Article  CAS  Google Scholar 

  • Miller E, Wohlfarth G, Diekert G (1997) Comparative studies on tetrachloroethene reductive dechlorination mediated by Desulfitobacterium sp. strain PCE-S. Arch Microbiol 168:513–519

    Article  CAS  Google Scholar 

  • Miura T, Yamazoe A, Ito M, Ohji S, Hosoyama A, Takahata Y, Fujita N (2015) The impact of injections of different nutrients on the bacterial community and its Dechlorination activity in chloroethene-contaminated groundwater. Microbes Environ / JSME 30:164–171. doi:10.1264/jsme2.ME14127

    Article  Google Scholar 

  • Mohn WW, Tiedje JM (1992) Microbial reductive dehalogenation. Microbiol Rev 56:482–507

    CAS  Google Scholar 

  • Moran MJ, Zogorski JS, Squillace PJ (2007) Chlorinated solvents in groundwater of the United States. Environ Sci Technol 41:74–81

    Article  CAS  Google Scholar 

  • Morkin M, Devlin JF, Barker JF, Butler BJ (2000) In situ sequential treatment of a mixed contaminant plume. J Contam Hydrol 45:283–302. doi:10.1016/S0169-7722(00)00111-X

    Article  CAS  Google Scholar 

  • Mukherjee P, Roy P (2012) Identification and characterisation of a bacterial isolate capable of growth on trichloroethylene as the sole carbon source. Adv Microbiol 2:284

    Article  CAS  Google Scholar 

  • Müller JA, Rosner BM, von Abendroth G, Meshulam-Simon G, McCarty PL, Spormann AM (2004) Molecular identification of the catabolic vinyl chloride reductase from Dehalococcoides sp. strain VS and its environmental distribution. Appl Environ Microbiol 70:4880–4888. doi:10.1128/aem.70.8.4880-4888.2004

    Article  CAS  Google Scholar 

  • Nelson MJ, Montgomery S, O'neill E, Pritchard P (1986) Aerobic metabolism of trichloroethylene by a bacterial isolate. Appl Environ Microbiol 52:383–384

    CAS  Google Scholar 

  • Nelson MJ, Montgomery SO, Mahaffey W, Pritchard P (1987) Biodegradation of trichloroethylene and involvement of an aromatic biodegradative pathway. Appl Environ Microbiol 53:949–954

    CAS  Google Scholar 

  • Nelson M, Montgomery S, Pritchard P (1988) Trichloroethylene metabolism by microorganisms that degrade aromatic compounds. Appl Environ Microbiol 54:604–606

    CAS  Google Scholar 

  • Němeček J, Pokorný P, Lhotský O et al (2016) Combined nano-biotechnology for in-situ remediation of mixed contamination of groundwater by hexavalent chromium and chlorinated solvents. Sci Total Environ 563:822–834

    Article  CAS  Google Scholar 

  • Neumann A, Wohlfarth G, Diekert G (1996) Purification and characterization of tetrachloroethene reductive dehalogenase from Dehalospirillum multivorans. J Biol Chem 271:16515–16519

    Article  CAS  Google Scholar 

  • Neumann A, Wohlfarth G, Diekert G (1998) Tetrachloroethene dehalogenase from Dehalospirillum multivorans: cloning, sequencing of the encoding genes, and expression of the pceA gene in Escherichia coli. J Bacteriol 180:4140–4145

    CAS  Google Scholar 

  • Nielsen AK, Gerdes K, Murrell JC (1997) Copper-dependent reciprocal transcriptional regulation of methane monooxygenase genes in Methylococcus capsulatus and Methylosinus trichosporium. Mol Microbiol 25:399–409

    Article  CAS  Google Scholar 

  • Nijenhuis I, Kuntze K (2016) Anaerobic microbial dehalogenation of organohalides—state of the art and remediation strategies. Curr Opin Biotechnol 38:33–38

    Article  CAS  Google Scholar 

  • Nijenhuis I, Nikolausz M, Koth A et al (2007) Assessment of the natural attenuation of chlorinated ethenes in an anaerobic contaminated aquifer in the Bitterfeld/Wolfen area using stable isotope techniques, microcosm studies and molecular biomarkers. Chemosphere 67:300–311. doi:10.1016/j.chemosphere.2006.09.084

    Article  CAS  Google Scholar 

  • Nishino SF, Shin KA, Gossett JM, Spain JC (2013) Cytochrome P450 initiates degradation of cis-dichloroethene by Polaromonas sp. strain JS666. Appl Environ Microbiol 79:2263–2272. doi:10.1128/aem.03445-12

    Article  CAS  Google Scholar 

  • Noell AL (2009) Estimation of sequential degradation rate coefficients for chlorinated Ethenes. Pract Period Hazard Toxic Radioact Waste Manag 13:35–44. doi:10.1061/(ASCE)1090-025X(2009)13:1(35)

    Article  CAS  Google Scholar 

  • Nonaka H, Keresztes G, Shinoda Y et al (2006) Complete genome sequence of the dehalorespiring bacterium Desulfitobacterium hafniense Y51 and comparison with Dehalococcoides ethenogenes 195. J Bacteriol 188:2262–2274. doi:10.1128/jb.188.6.2262-2274.2006

    Article  CAS  Google Scholar 

  • Okeke BC, Chang YC, Hatsu M, Suzuki T, Takamizawa K (2001) Purification, cloning, and sequencing of an enzyme mediating the reductive dechlorination of tetrachloroethylene (PCE) from Clostridium bifermentans DPH-1. Can J Microbiol 47:448–456

    Article  CAS  Google Scholar 

  • Oldenhuis R, Vink R, Janssen DB, Witholt B (1989) Degradation of chlorinated aliphatic hydrocarbons by Methylosinus trichosporium OB3b expressing soluble methane monooxygenase. Appl Environ Microbiol 55:2819–2826

    CAS  Google Scholar 

  • Oldenhuis R, Oedzes JY, van der Waarde JJ, Janssen DB (1991) Kinetics of chlorinated hydrocarbon degradation by Methylosinus trichosporium OB3b and toxicity of trichloroethylene. Appl Environ Microbiol 57:7–14

    CAS  Google Scholar 

  • Paes F, Liu X, Mattes TE, Cupples AM (2015) Elucidating carbon uptake from vinyl chloride using stable isotope probing and Illumina sequencing. Appl Microbiol Biotechnol 99:7735–7743

    Article  CAS  Google Scholar 

  • Pantazidou M, Panagiotakis I, Mamais D, Zikidi V (2012) Chloroethene Biotransformation in the presence of different sulfate concentrations. Ground Water Monit Remediat 32:106–119. doi:10.1111/j.1745-6592.2011.01372.x

    Article  CAS  Google Scholar 

  • Parthasarathy A, Stich TA, Lohner ST, Lesnefsky A, Britt RD, Spormann AM (2015) Biochemical and EPR-spectroscopic investigation into heterologously expressed vinyl chloride reductive dehalogenase (VcrA) from Dehalococcoides mccartyi strain VS. J Am Chem Soc 137:3525–3532

    Article  CAS  Google Scholar 

  • Paul L, Jakobsen R, Smolders E, Albrechtsen H-J, Bjerg PL (2016) Reductive dechlorination of trichloroethylene (TCE) in competition with Fe and Mn oxides—observed dynamics in H2-dependent terminal electron accepting processes. Geomicrobiol J 33:357–366

    Article  CAS  Google Scholar 

  • Payne KAP, Quezada CP, Fisher K et al (2015) Reductive dehalogenase structure suggests a mechanism for B12-dependent dehalogenation. Nature 517:513–516. doi:10.1038/nature13901

    Article  CAS  Google Scholar 

  • Popat SC, Zhao K, Deshusses MA (2012) Bioaugmentation of an anaerobic biotrickling filter for enhanced conversion of trichloroethene to ethene. Chem Eng J 183:98–103

    Article  CAS  Google Scholar 

  • Poritz M, Goris T, Wubet T et al (2013) Genome sequences of two dehalogenation specialists—Dehalococcoides mccartyi strains BTF08 and DCMB5 enriched from the highly polluted Bitterfeld region. FEMS Microbiol Lett 343:101–104. doi:10.1111/1574-6968.12160

    Article  CAS  Google Scholar 

  • Regeard C, Maillard J, Holliger C (2004) Development of degenerate and specific PCR primers for the detection and isolation of known and putative chloroethene reductive dehalogenase genes. J Microbiol Methods 56:107–118

    Article  CAS  Google Scholar 

  • Reij MW, Kieboom J, de Bont J, Hartmans S (1995) Continuous degradation of trichloroethylene by Xanthobacter sp. strain Py2 during growth on propene. Appl Environ Microbiol 61:2936–2942

    CAS  Google Scholar 

  • Richardson RE (2013) Genomic insights into organohalide respiration. Curr Opin Biotechnol 24:498–505. doi:10.1016/j.copbio.2013.02.014

    Article  CAS  Google Scholar 

  • Ritalahti KM, Amos BK, Sung Y, Wu Q, Koenigsberg SS, Löffler FE (2006) Quantitative PCR targeting 16S rRNA and reductive dehalogenase genes simultaneously monitors multiple Dehalococcoides strains. Appl Environ Microbiol 72:2765–2774

    Article  CAS  Google Scholar 

  • Robinson C, Barry DA, McCarty PL, Gerhard JI, Kouznetsova I (2009) pH control for enhanced reductive bioremediation of chlorinated solvent source zones. Sci Total Environ 407:4560–4573. doi:10.1016/j.scitotenv.2009.03.029

    Article  CAS  Google Scholar 

  • Rossi P, Shani N, Kohler F, Imfeld G, Holliger C (2012) Ecology and biogeography of bacterial communities associated with chloroethene-contaminated aquifers. Front Microbiol 3:260. doi:10.3389/fmicb.2012.00260

    Article  Google Scholar 

  • Rupakula A, Kruse T, Boeren S, Holliger C, Smidt H, Maillard J (2013) The restricted metabolism of the obligate organohalide respiring bacterium Dehalobacter restrictus: lessons from tiered functional genomics. Philos Trans R Soc Lond B Biol Sci, Biological sciences 368:20120325. doi:10.1098/rstb.2012.0325

    Article  CAS  Google Scholar 

  • Ryoo D, Shim H, Canada K, Barbieri P, Wood TK (2000) Aerobic degradation of tetrachloroethylene by toluene-o-xylene monooxygenase of Pseudomonas stutzeri OX1. Nat Biotechnol 18:775–778

    Article  CAS  Google Scholar 

  • Saeki H, Akira M, Furuhashi K, Averhoff B, Gottschalk G (1999) Degradation of trichloroethene by a linear-plasmid-encoded alkene monooxygenase in Rhodococcus corallinus (Nocardia corallina) B-276. Microbiology (Reading, England) 145(Pt 7):1721–1730. doi:10.1099/13500872-145-7-1721

    Article  CAS  Google Scholar 

  • Scheutz C, Nd D, Dennis P et al (2008) Concurrent ethene generation and growth of Dehalococcoides containing vinyl chloride reductive dehalogenase genes during an enhanced reductive dechlorination field demonstration. Environ Sci Technol 42:9302–9309

    Article  CAS  Google Scholar 

  • Schmidt KR, Tiehm A (2008) Natural attenuation of chloroethenes: identification of sequential reductive/oxidative biodegradation by microcosm studies. Water Sci Technol 58:1137–1145. doi:10.2166/wst.2008.729

    Article  CAS  Google Scholar 

  • Schmidt KR, Gaza S, Voropaev A, Ertl S, Tiehm A (2014) Aerobic biodegradation of trichloroethene without auxiliary substrates. Water Res 59:112–118. doi:10.1016/j.watres.2014.04.008

    Article  CAS  Google Scholar 

  • Scholz-Muramatsu H, Neumann A, Meßmer M, Moore E, Diekert G (1995) Isolation and characterization of Dehalospirillum multivorans gen. nov., sp. nov., a tetrachloroethene-utilizing, strictly anaerobic bacterium. Arch Microbiol 163:48–56

    Article  CAS  Google Scholar 

  • Semprini L (1997) Strategies for the aerobic co-metabolism of chlorinated solvents. Curr Opin Biotechnol 8:296–308

    Article  CAS  Google Scholar 

  • Seshadri R, Adrian L, Fouts DE et al (2005) Genome sequence of the PCE-dechlorinating bacterium Dehalococcoides ethenogenes. Science (New York, NY) 307:105–108

    Article  CAS  Google Scholar 

  • Sharma PK, McCarty PL (1996) Isolation and characterization of a facultatively aerobic bacterium that reductively dehalogenates tetrachloroethene to cis-1, 2-dichloroethene. Appl Environ Microbiol 62:761–765

    CAS  Google Scholar 

  • Shigematsu T, Hanada S, Eguchi M, Kamagata Y, Kanagawa T, Kurane R (1999) Soluble methane monooxygenase gene clusters from trichloroethylene-degrading Methylomonas sp. strains and detection of methanotrophs during in situ bioremediation. Appl Environ Microbiol 65:5198–5206

    CAS  Google Scholar 

  • Shin K (2010) Biodegradation of diphenylamine and cis-dichloroethene. PhD Thesis Georgia Institute of Technology

  • Silva MD, Daprato R, Gomez D, Hughes J, Ward C, Alvarez P (2006) Comparison of bioaugmentation and biostimulation for the enhancement of dense nonaqueous phase liquid source zone bioremediation. Water Environ Res 78:2456–2465

    Article  CAS  Google Scholar 

  • Singh H, Loffler FE, Fathepure BZ (2004) Aerobic biodegradation of vinyl chloride by a highly enriched mixed culture. Biodegradation 15:197–204

    Article  Google Scholar 

  • Smidt H, de Vos WM (2004) Anaerobic microbial dehalogenation. Annu Rev Microbiol 58:43–73. doi:10.1146/annurev.micro.58.030603.123600

    Article  CAS  Google Scholar 

  • Smith KS, Costello AM, Lidstrom ME (1997) Methane and trichloroethylene oxidation by an estuarine methanotroph, Methylobacter sp. strain BB5. 1. Appl Environ Microbiol 63:4617–4620

    CAS  Google Scholar 

  • Steffan RJ, Vainberg S (2013) Production and handling Dehalococcoides bioaugumentation cultures. In: Stroo HF, Leeson A, Ward CH (eds) Bioaugumentation for groundwater remediation. Springer, New York, pp 89–116 360 p

    Chapter  Google Scholar 

  • Steffan RJ, Sperry KL, Walsh MT, Vainberg S, Condee CW (1999) Field-scale evaluation of in situ bioaugmentation for remediation of chlorinated solvents in groundwater. Environ Sci Technol 33:2771–2781

    Article  CAS  Google Scholar 

  • Stirling DI, Dalton H (1979) The fortuitous oxidation and cometabolism of various carbon compounds by whole-cell suspensions of Methylococcus capsulatus (bath). FEMS Microbiol Lett 5:315–318

    Article  CAS  Google Scholar 

  • Sung Y (2005) Isolation and ecology of bacterial populations involved in reductive dechlorination of chlorinated solvents. Diss. Georgia Institute of Tech. 2005

  • Sung Y, Ritalahti KM, Sanford RA, Urbance JW, Flynn SJ, Tiedje JM, Löffler FE (2003) Characterization of two tetrachloroethene-reducing, acetate-oxidizing anaerobic bacteria and their description as Desulfuromonas michiganensis sp. nov. Appl Environ Microbiol 69:2964–2974

    Article  CAS  Google Scholar 

  • Sung Y, Fletcher KE, Ritalahti KM et al (2006a) Geobacter lovleyi sp. nov. strain SZ, a novel metal-reducing and tetrachloroethene-dechlorinating bacterium. Appl Environ Microbiol 72:2775–2782

    Article  CAS  Google Scholar 

  • Sung Y, Ritalahti KM, Apkarian RP, Löffler FE (2006b) Quantitative PCR confirms purity of strain GT, a novel trichloroethene-to-ethene-respiring Dehalococcoides isolate. Appl Environ Microbiol 72:1980–1987

    Article  CAS  Google Scholar 

  • Suttinun O, Lederman PB, Luepromchai E (2004) Application of terpene-induced cell for enhancing biodegradation of TCE contaminated soil. Songklanakarin J Sci Technol 26:131–142

    Google Scholar 

  • Suttinun O, Müller R, Luepromchai E (2009) Trichloroethylene cometabolic degradation by Rhodococcus sp. L4 induced with plant essential oils. Biodegradation 20:281–291

    Article  CAS  Google Scholar 

  • Suttinun O, Müller R, Luepromchai E (2010) Cometabolic degradation of trichloroethene by Rhodococcus sp. strain L4 immobilized on plant materials rich in essential oils. Appl Environ Microbiol 76:4684–4690. doi:10.1128/aem.03036-09

    Article  CAS  Google Scholar 

  • Suttinun O, Luepromchai E, Müller R (2013) Cometabolism of trichloroethylene: concepts, limitations and available strategies for sustained biodegradation. Rev Environ Sci Biotechnol 12:99–114. doi:10.1007/s11157-012-9291-x

    Article  CAS  Google Scholar 

  • Suyama A, Iwakiri R, Kai K, Tokunaga T, Sera N, Furukawa K (2001) Isolation and characterization of Desulfitobacterium sp. strain Y51 capable of efficient dehalogenation of tetrachloroethene and polychloroethanes. Biosci Biotechnol Biochem 65:1474–1481

    Article  CAS  Google Scholar 

  • Suyama A, Yamashita M, Yoshino S, Furukawa K (2002) Molecular characterization of the PceA reductive dehalogenase of Desulfitobacterium sp. strain Y51. J Bacteriol 184:3419–3425

    Article  CAS  Google Scholar 

  • Tandoi V, Distefano TD, Bowser PA, Gossett JM, Zinder SH (1994) Reductive dehalogenation of chlorinated ethenes and halogenated ethanes by a high-rate anaerobic enrichment culture. Environ Sci Technol 28:973–979. doi:10.1021/es00054a033

    Article  CAS  Google Scholar 

  • Tang S, Gong Y, Edwards EA (2012) Semi-automatic in silico gap closure enabled de novo assembly of two Dehalobacter genomes from metagenomic data. PLoS One 7:e52038. doi:10.1371/journal.pone.0052038

    Article  CAS  Google Scholar 

  • Tang S, Chan WW, Fletcher KE et al (2013) Functional characterization of reductive dehalogenases by using blue native polyacrylamide gel electrophoresis. Appl Environ Microbiol 79:974–981. doi:10.1128/aem.01873-12

    Article  CAS  Google Scholar 

  • Tarnawski S-E, Rossi P, Brennerova MV, Stavelova M, Holliger C (2016) Validation of an integrative methodology to assess and monitor reductive dechlorination of chlorinated ethenes in contaminated aquifers. Front Environ Sci 4. doi:10.3389/fenvs.2016.00007

  • Tartakovsky B, Manuel MF, Guiot SR (2003) Trichloroethylene degradation in a coupled anaerobic/aerobic reactor oxygenated using hydrogen peroxide. Environ Sci Technol 37:5823–5828. doi:10.1021/es030340v

    Article  CAS  Google Scholar 

  • Terzenbach DP, Blaut M (1994) Transformation of tetrachloroethylene to trichloroethylene by homoacetogenic bacteria. FEMS Microbiol Lett 123:213–218

    Article  CAS  Google Scholar 

  • Tiehm A, Schmidt KR (2011) Sequential anaerobic/aerobic biodegradation of chloroethenes—aspects of field application. Curr Opin Biotechnol 22:415–421. doi:10.1016/j.copbio.2011.02.003

    Article  CAS  Google Scholar 

  • Tiehm A, Schmidt KR, Pfeifer B, Heidinger M, Ertl S (2008) Growth kinetics and stable carbon isotope fractionation during aerobic degradation of cis-1, 2-dichloroethene and vinyl chloride. Water Res 42(10):2431–2438

  • Tobiszewski M, Namieśnik J (2012) Abiotic degradation of chlorinated ethanes and ethenes in water. Environ Sci Pollut Res 19:1994–2006

    Article  CAS  Google Scholar 

  • Tsien H-C, Hanson RS (1992) Soluble methane monooxygenase component B gene probe for identification of methanotrophs that rapidly degrade trichloroethylene. Appl Environ Microbiol 58:953–960

    CAS  Google Scholar 

  • Tsien H-C, Brusseau GA, Hanson RS, Waclett L (1989) Biodegradation of trichloroethylene by Methylosinus trichosporium OB3b. Appl Environ Microbiol 55:3155–3161

    CAS  Google Scholar 

  • Tsukagoshi N, Ezaki S, Uenaka T, Suzuki N, Kurane R (2006) Isolation and transcriptional analysis of novel tetrachloroethene reductive dehalogenase gene from Desulfitobacterium sp. strain KBC1. Appl Microbiol Biotechnol 69:543–553

    Article  CAS  Google Scholar 

  • Uchino Y, Miura T, Hosoyama A et al (2015) Complete genome sequencing of Dehalococcoides sp. strain UCH007 using a differential reads picking method. Stand Genomic Sci 10:102. doi:10.1186/s40793-015-0095-9

    Article  Google Scholar 

  • Uchiyama H, Nakajima T, Yagi O, Tabuchi T (1989) Aerobic degradation of trichloroethylene by a new type II methane-utilizing bacterium, strain M. Agric Biol Chem 53:2903–2907

    CAS  Google Scholar 

  • Vainberg S, Condee CW, Steffan RJ (2009) Large-scale production of bacterial consortia for remediation of chlorinated solvent-contaminated groundwater. J Ind Microbiol Biotechnol 36:1189–1197. doi:10.1007/s10295-009-0600-5

    Article  CAS  Google Scholar 

  • Van Hylckama Vlieg JE, De Koning W, Janssen DB (1997) Effect of chlorinated ethene conversion on viability and activity of Methylosinus trichosporium OB3b. Appl Environ Microbiol 63:4961–4964

    CAS  Google Scholar 

  • Verce MF, Ulrich RL, Freedman DL (2000) Characterization of an isolate that uses vinyl chloride as a growth substrate under aerobic conditions. Appl Environ Microbiol 66:3535–3542

    Article  CAS  Google Scholar 

  • Verce MF, Ulrich RL, Freedman DL (2001) Transition from cometabolic to growth-linked biodegradation of vinyl chloride by a Pseudomonas sp. isolated on ethene. Environ Sci Technol 35:4242–4251

    Article  CAS  Google Scholar 

  • Verce MF, Gunsch CK, Danko AS, Freedman DL (2002) Cometabolism of cis-1, 2-dichloroethene by aerobic cultures grown on vinyl chloride as the primary substrate. Environ Sci Technol 36:2171–2177

    Article  CAS  Google Scholar 

  • Vogel TM, McCarty PL (1985) Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions. Appl Environ Microbiol 49:1080–1083

    CAS  Google Scholar 

  • Wackett LP, Gibson DT (1988) Degradation of trichloroethylene by toluene dioxygenase in whole-cell studies with Pseudomonas putida F1. Appl Environ Microbiol 54:1703–1708

    CAS  Google Scholar 

  • Wackett LP, Brusseau GA, Householder SR, Hanson RS (1989) Survey of microbial oxygenases: trichloroethylene degradation by propane-oxidizing bacteria. Appl Environ Microbiol 55:2960–2964

    CAS  Google Scholar 

  • Wacławek S, Nosek J, Cádrová L, Antoš V, Černík M (2015) Use of various zero valent irons for degradation of chlorinated ethenes and ethanes. Ecol Chem Eng S 22:577–587

    Google Scholar 

  • Wagner DD, Hug LA, Hatt JK et al (2012) Genomic determinants of organohalide-respiration in Geobacter lovleyi, an unusual member of the Geobacteraceae. BMC Genomics 13:1

    Article  CAS  Google Scholar 

  • Waller AS, Krajmalnik-Brown R, Löffler FE, Edwards EA (2005) Multiple reductive-dehalogenase-homologous genes are simultaneously transcribed during dechlorination by Dehalococcoides-containing cultures. Appl Environ Microbiol 71:8257–8264. doi:10.1128/AEM.71.12.8257-8264.2005

    Article  CAS  Google Scholar 

  • Wang S, Yang Q, Zhang L, Wang Y (2014) Kinetics of the aerobic co-metabolism of 1, 1-dichloroethylene by Achromobacter sp.: a novel benzene-grown culture. Biotechnol Lett 36:1271–1278

    Article  CAS  Google Scholar 

  • Wen L-L, Zhang Y, Pan Y-W et al (2015) The roles of methanogens and acetogens in dechlorination of trichloroethene using different electron donors. Environ Sci Pollut Res 22:19039–19047

    Article  CAS  Google Scholar 

  • Wiedemeier TH, Swanson MA, Moutoux DE et al. (1998) Technical protocol for evaluating natural attenuation of chlorinated solvents in ground water. In: EPA/600/R-98/128. US Environmental Protection Agency, Washington

  • Wild A, Hermann R, Leisinger T (1996) Isolation of an anaerobic bacterium which reductively dechlorinates tetrachloroethene and trichloroethene. Biodegradation 7:507–511

    Article  CAS  Google Scholar 

  • Wilson JT, Wilson BH (1985) Biotransformation of trichloroethylene in soil. Appl Environ Microbiol 49:242

    CAS  Google Scholar 

  • Winter RB, Yen K-M, Ensley BD (1992) Pseudomonas or host containing toluene monooxygenase genes from Pseudomonas. Google Patents

  • Wittlingerova Z, Machackova J, Petruzelkova A, Trapp S, Vlk K, Zima J (2013) One-year measurements of chloroethenes in tree cores and groundwater at the SAP Mimoň site, northern Bohemia. Environ Sci Pollut Res 20:834–847

    Article  CAS  Google Scholar 

  • Yang Y, McCarty PL (1998) Competition for hydrogen within a chlorinated solvent dehalogenating anaerobic mixed culture. Environ Sci Technol 32:3591–3597. doi:10.1021/es980363n

    Article  CAS  Google Scholar 

  • Yang Y, McCarty PL (2002) Comparison between donor substrates for biologically enhanced tetrachloroethene DNAPL dissolution. Environ Sci Technol 36:3400–3404. doi:10.1021/es011408e

    Article  CAS  Google Scholar 

  • Yeager CM, Bottomley PJ, Arp DJ (2001) Cytotoxicity associated with trichloroethylene oxidation in Burkholderia cepacia G4. Appl Environ Microbiol 67:2107–2115. doi:10.1128/aem.67.5.2107-2115.2001

    Article  CAS  Google Scholar 

  • Yohda M, Yagi O, Takechi A et al (2015) Genome sequence determination and metagenomic characterization of a Dehalococcoides mixed culture grown on cis-1,2-dichloroethene. J Biosci Bioeng 120:69–77. doi:10.1016/j.jbiosc.2014.12.001

    Article  CAS  Google Scholar 

  • Yu S, Dolan ME, Semprini L (2005) Kinetics and inhibition of reductive dechlorination of chlorinated ethylenes by two different mixed cultures. Environ Sci Technol 39:195–205. doi:10.1021/es0496773

    Article  CAS  Google Scholar 

  • van der Zaan B, Hannes F, Hoekstra N, Rijnaarts H, de Vos WM, Smidt H, Gerritse J (2010) Correlation of Dehalococcoides 16S rRNA and chloroethene-reductive dehalogenase genes with geochemical conditions in chloroethene-contaminated groundwater. Appl Environ Microbiol 76:843–850. doi:10.1128/aem.01482-09

    Article  CAS  Google Scholar 

  • Zhao H-P, Schmidt KR, Tiehm A (2010) Inhibition of aerobic metabolic cis-1, 2-di-chloroethene biodegradation by other chloroethenes. Water Res 44:2276–2282

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This review was supported financially through the Grant Agency of the Czech Republic project: ‘Linking microbial meta-omics with ecosystem functioning: populations and pathways involved in chloroethenes degradation’, project no. 14-32432S. Further infrastructure support was provided through Ministry of Education, Youth and Sports CZ project no. LO1201 and the OPR&DI project ‘Centre for Nanomaterials, Advanced Technologies and Innovation CZ.1.05/2.1.00/01.0005’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alena Ševců.

Additional information

Responsible editor: Diane Purchase

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolinová, I., Štrojsová, M., Černík, M. et al. Microbial degradation of chloroethenes: a review. Environ Sci Pollut Res 24, 13262–13283 (2017). https://doi.org/10.1007/s11356-017-8867-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-8867-y

Keywords

Navigation