Skip to main content
Log in

Reductive dechlorination of tetrachloroethene by a stepwise catalysis of different organohalide respiring bacteria and reductive dehalogenases

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

The enrichment culture SL2 dechlorinating tetrachloroethene (PCE) to ethene with strong trichloroethene (TCE) accumulation prior to cis-1,2-dichloroethene (cis-DCE) formation was analyzed for the presence of organohalide respiring bacteria and reductive dehalogenase genes (rdhA). Sulfurospirillum-affiliated bacteria were identified to be involved in PCE dechlorination to cis-DCE whereas “Dehalococcoides”-affiliated bacteria mainly dechlorinated cis-DCE to ethene. Two rdhA genes highly similar to tetrachloroethene reductive dehalogenase genes (pceA) of S. multivorans and S. halorespirans were present as well as an rdhA gene very similar to the trichloroethene reductive dehalogenase gene (tceA) of “Dehalococcoides ethenogenes” strain 195. A single strand conformation polymorphism (SSCP) method was developed allowing the simultaneous detection of the three rdhA genes and the estimation of their abundance. SSCP analysis of different SL2 cultures showed that one pceA gene was expressed during PCE dechlorination whereas the second was expressed during TCE dechlorination. The tceA gene was involved in cis-DCE dechlorination to ethene. Analysis of the internal transcribed spacer region between the 16S and 23S rRNA genes revealed two distinct sequences originating from Sulfurospirillum suggesting that two Sulfurospirillum populations were present in SL2. Whether each Sulfurospirillum population was catalyzing a different dechlorination step could however not be elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amos BK, Suchomel EJ, Pennell KD, Löffler FE (2009) Spatial and temporal distributions of Geobacter lovleyi and Dehalococcoides spp. during bioenhanced PCE-NAPL dissolution. Environ Sci Technol 43:1977–1985

    Article  PubMed  CAS  Google Scholar 

  • Behrens S, Losekann T, Pett-Ridge J, Weber PK, Ng WO, Stevenson BS et al (2008) Linking microbial phylogeny to metabolic activity at the single-cell level by using enhanced element labeling-catalyzed reporter deposition fluorescence in situ hybridization (EL-FISH) and NanoSIMS. Appl Environ Microbiol 74:3143–3150

    Article  PubMed  CAS  Google Scholar 

  • Bunge M, Kleikemper J, Miniaci C, Duc L, Muusse MG, Hause G, Zeyer J (2007) Benzoate-driven dehalogenation of chlorinated ethenes in microbial cultures from a contaminated aquifer. Appl Microbiol Biotechnol 76:1447–1456

    Article  PubMed  CAS  Google Scholar 

  • Cardinale M, Brusetti L, Quatrini P, Borin S, Puglia AM, Rizzi A et al (2004) Comparison of different primer sets for use in automated ribosomal intergenic spacer analysis of complex bacterial communities. Appl Environ Microbiol 70:6147–6156

    Article  PubMed  CAS  Google Scholar 

  • Christ JA, Ramsburg CA, Abriola LM, Pennell KD, Löffler FE (2005) Coupling aggressive mass removal with microbial reductive dechlorination for remediation of DNAPL source zones: a review and assessment. Environ Health Perspect 113:465–477

    Article  PubMed  CAS  Google Scholar 

  • Costentin C, Robert M, Savéant J-M (2006) Electron transfer and bond breaking: recent advances. Chem Phys 324:40–56

    Article  CAS  Google Scholar 

  • Cupples AM, Spormann AM, McCarty PL (2003) Growth of a Dehalococcoides-like microorganism on vinyl chloride and cis-dichloroethene as electron acceptors as determined by competitive PCR. Appl Environ Microbiol 69:953–959

    Article  PubMed  CAS  Google Scholar 

  • Da Silva MLB, Daprato RC, Gomez DE, Hughes JB, Ward CH, Alvarez PJJ (2006) Comparison of bioaugmentation and biostimulation for the enhancement of dense nonaqueous phase liquid source zone bioremediation. Water Environ Res 78:2456–2465

    Article  PubMed  CAS  Google Scholar 

  • Daprato RC, Löffler FE, Hughes JB (2007) Comparative analysis of three tetrachloroethene to ethene halorespiring consortia suggests functional redundancy. Environ Sci Technol 41:2261–2269

    Article  PubMed  CAS  Google Scholar 

  • Dowideit K, Scholz-Muramatsu H, Miethling-Graff R, Vigelahn L, Freygang M, Dohrmann AB, Tebbe CC (2010) Spatial heterogeneity of dechlorinating bacteria and limiting factors for in situ trichloroethene dechlorination revealed by analyses of sediment cores from a polluted field site. FEMS Microbiol Ecol 71:444–459

    Article  PubMed  CAS  Google Scholar 

  • Duhamel M, Edwards EA (2007) Growth and yields of dechlorinators, acetogens and methanogens during reductive dechlorination of chlorinated ethenes and dihaloelimination of 1,2-dichloroethane. Environ Sci Technol 41:2303–2310

    Article  PubMed  CAS  Google Scholar 

  • Duhamel M, Wehr SD, Yu L, Rizvi H, Seepersad D, Dworatzek S et al (2002) Comparison of anaerobic dechlorinating enrichment cultures maintained on tetrachloroethene, trichloroethene, cis-dichloroethene and vinyl chloride. Water Res 36:4193–4202

    Article  PubMed  CAS  Google Scholar 

  • Duhamel M, Mo K, Edwards EA (2004) Characterization of a highly enriched Dehalococcoides-containing culture that grows on vinyl chloride and trichloroethene. Appl Environ Microbiol 70:5539–5545

    Article  Google Scholar 

  • Freeborn RA, West KA, Bhupathiraju VK, Chauhan S, Rahm BG, Richardson RE, Alvarez-Cohen L (2005) Phylogenetic analysis of TCE-dechlorinating consortia enriched on a variety of electron donors. Environ Sci Technol 39:8358–8368

    Article  PubMed  CAS  Google Scholar 

  • Grostern A, Edwards EA (2006) Growth of Dehalobacter and Dehalococcoides spp. during degradation of chlorinated ethanes. Appl Environ Microbiol 72:428–436

    Article  PubMed  CAS  Google Scholar 

  • He JZ, Ritalahti KM, Yang K-L, Koenigsberg SS, Löffler FE (2003) Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium. Nature 424:62–65

    Article  PubMed  CAS  Google Scholar 

  • He J, Sung Y, Krajmalnik-Brown R, Ritalahti KM, Löffler FE (2005) Isolation and characterization of Dehalococcoides sp strain FL2, a trichloroethene (TCE)- and 1,2-dichloroethene-respiring anaerobe. Environ Microbiol 7:1442–1450

    Article  PubMed  CAS  Google Scholar 

  • Hendrickson ER, Payne JA, Young RM, Starr MG, Perry MP, Fahnestock S et al (2002) Molecular analysis of Dehalococcoides 16S ribosomal DNA from chloroethene-contaminated sites throughout North America and Europe. Appl Environ Microbiol 68:485–495

    Article  PubMed  CAS  Google Scholar 

  • Holliger C, Hahn D, Harmsen H, Ludwig W, Schumacher W, Tindall B et al (1998) Dehalobacter restrictus gen. nov. and sp. nov., a strictly anaerobic bacterium that reductively dechlorinates tetra- and trichloroethene in an anaerobic respiration. Arch Microbiol 169:313–321

    Article  PubMed  CAS  Google Scholar 

  • Holliger C, Regeard C, Diekert G (2003) Dehalogenation by anaerobic bacteria. In: Häggblom MM, Bossert ID (eds) Dehalogenation: microbial processes, environmental applications. Kluwer Academic Publishers Group, Dordrecht, pp 115–157

    Google Scholar 

  • Holmes VF, He J, Lee PK, Alvarez-Cohen L (2006) Discrimination of multiple Dehalococcoides strains in a trichloroethene enrichment by quantification of their reductive dehalogenase genes. Appl Environ Microbiol 72:5877–5883

    Article  PubMed  CAS  Google Scholar 

  • Hood ED, Major DW, Quinn JW, Yoon WS, Gavaskar A, Edwards EA (2008) Demonstration of enhanced bioremediation in a TCE source area at Launch Complex 34, Cape Canaveral Air Force Station. Ground Water Monit Remediat 28:98–107

    Article  CAS  Google Scholar 

  • Imfeld G, Nijenhuis I, Nikolausz M, Zeiger S, Paschke H, Drangmeister J et al (2008) Assessment of in situ degradation of chlorinated ethenes and bacterial community structure in a complex contaminated groundwater system. Water Res 42:871–882

    Article  PubMed  CAS  Google Scholar 

  • Johnson DR, Lee PK, Holmes VF, Alvarez-Cohen L (2005) An internal reference technique for accurately quantifying specific mRNAs by real-time PCR with application to the tceA reductive dehalogenase gene. Appl Environ Microbiol 71:3866–3871

    Article  PubMed  CAS  Google Scholar 

  • Kräutler B, Fieber W, Ostermann S, Fasching M, Ongania K-H, Gruber K et al (2003) The cofactor of tetrachloroethene reductive dehalogenase of Dehalospirillum multivorans, a new type of a natural corrinoid. Helv Chim Acta 86:3698–3716

    Article  Google Scholar 

  • Lee PK, Johnson DR, Holmes VF, He J, Alvarez-Cohen L (2006) Reductive dehalogenase gene expression as a biomarker for physiological activity of Dehalococcoides spp. Appl Environ Microbiol 72:6161–6168

    Article  PubMed  CAS  Google Scholar 

  • Lee PKH, Macbeth TW, Sorenson KS, Deeb RA, Alvarez-Cohen L (2008) Quantifying genes and transcripts to assess the in situ physiology of “Dehalococcoides” spp. in a trichloroethene-contaminated groundwater site. Appl Environ Microbiol 74:2728–2739

    Article  PubMed  CAS  Google Scholar 

  • Luijten MLGC, de Weert J, Smidt H, Boschker HTS, de Vos WM, Schraa G, Stams AJM (2003) Description of Sulfurospirillum halorespirans sp. nov., an anaerobic, tetrachloroethene-respiring bacterium, and transfer of Dehalospirillum multivorans to the genus Sulfurospirillum as Sulfurospirillum multivorans comb. nov. Int J Syst Evol Microbiol 53:787–793

    Article  PubMed  CAS  Google Scholar 

  • Maillard J, Schumacher W, Vazquez F, Regeard C, Hagen WR, Holliger C (2003) Characterization of the corrinoid iron–sulfur protein tetrachloroethene reductive dehalogenase of Dehalobacter restrictus. Appl Environ Microbiol 69:4628–4638

    Article  PubMed  CAS  Google Scholar 

  • Maymo-Gatell X, Nijenhuis I, Zinder SH (2001) Reductive dechlorination of cis-1,2-dichloroethene and vinyl chloride by Dehalococcoides ethenogenes. Environ Sci Technol 35:516–521

    Article  PubMed  CAS  Google Scholar 

  • Neumann A, Wohlfarth G, Diekert G (1995) Properties of tetrachloroethene and trichloroethene dehalogenase of Dehalospirillum multivorans. Arch Microbiol 163:276–281

    Article  CAS  Google Scholar 

  • Neumann A, Wohlfarth G, Diekert G (1996) Purification and characterization of tetrachloroethene reductive dehalogenase from Dehalospirillum multivorans. J Biol Chem 271:16515–16519

    Article  PubMed  CAS  Google Scholar 

  • Rahm BG, Chauhan S, Holmes VF, Macbeth TW, Sorenson KSJ, Alvarez-Cohen L (2006) Molecular characterization of microbial populations at two sites with differing reductive dechlorination abilities. Biodegradation 17:523–534

    Article  PubMed  CAS  Google Scholar 

  • Regeard C, Maillard J, Holliger C (2004) Development of degenerate and specific PCR primers for the detection and isolation of known and putative chloroethene reductive dehalogenase genes. J Microbiol Methods 56:107–118

    Article  PubMed  CAS  Google Scholar 

  • Rouzeau-Szynalski K, Gaillard M, Maillard J, Holliger C (2011) Frequent concomitant presence of Desulfitobacterium spp. and “Dehalococcoides” spp. in chloroethene-dechlorinating microbial communities. Appl Microbiol Biotechnol (in press). (http://dx.doi.org/10.1007/s00253-010-3042-0)

  • Scholz-Muramatsu H, Neumann A, Messmer M, Moore E, Diekert G (1995) Isolation and characterization of Dehalospirillum multivorans gen. nov., sp. nov., a tetrachloroethene-utilizing, strictly anaerobic bacterium. Arch Microbiol 163:48–56

    Article  CAS  Google Scholar 

  • Smidt H, de Vos WM (2004) Anaerobic microbial dehalogenation. Annu Rev Microbiol 58:43–73

    Article  PubMed  CAS  Google Scholar 

  • Sung Y, Ritalahti KM, Apkarian RP, Löffler FE (2006) Quantitative PCR confirms purity of strain GT, a novel trichloroethene-to-ethene-respiring Dehalococcoides isolate. Appl Environ Microbiol 72:1980–1987

    Article  PubMed  CAS  Google Scholar 

  • Tas N, van Eekert MHA, de Vos WM, Smidt H (2009) The little bacteria that can—diversity, genomics and ecophysiology of ‘Dehalococcoides’ spp. in contaminated environments. Microb Biotechnol 3:389–402

    Google Scholar 

  • Waller AS, Krajmalnik-Brown R, Löffler FE, Edwards EA (2005) Multiple reductive-dehalogenase-homologous genes are simultaneously transcribed during dechlorination by Dehalococcoides-containing cultures. Appl Environ Microbiol 71:8257–8264

    Article  PubMed  CAS  Google Scholar 

  • Yang YR, Pesaro M, Sigler W, Zeyer J (2005) Identification of microorganisms involved in reductive dehalogenation of chlorinated ethenes in an anaerobic microbial community. Water Res 39:3954–3966

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

M.-P. Charnay was financed during her visit to LBE by the Ministry of agriculture of France (AgroParisTech). Part of this work was supported by the Swiss National Science Foundation grants 3152-55413 and 3100-066957, by a grant of the Swiss Federal Office for Education and Science (contract 99.0362) in the framework of the EU project MAROC (EVK1-1999-00023), and by the project BIOTOOL (GOCE-003998) of the European Commission under the Sixth Framework Programme. We are grateful to Magdalena Sanchez for the excellent technical support and to Janneke Krooneman from Bioclear BV, Groningen, The Netherlands, for supplying the sample used for enrichment inoculation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christof Holliger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maillard, J., Charnay, MP., Regeard, C. et al. Reductive dechlorination of tetrachloroethene by a stepwise catalysis of different organohalide respiring bacteria and reductive dehalogenases. Biodegradation 22, 949–960 (2011). https://doi.org/10.1007/s10532-011-9454-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-011-9454-4

Keywords

Navigation