Skip to main content

Advertisement

Log in

Physiological and molecular genetic analyses of vinyl chloride and ethene biodegradation in Nocardioides sp. strain JS614

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Nocardioides sp. strain JS614 utilizes vinyl chloride and ethene as carbon and energy sources. JS614 could be influential in natural attenuation and biogeochemical ethene cycling, and useful for bioremediation, biocatalysis and metabolic engineering, but a fundamental understanding of the physiological and genetic basis of vinyl chloride and ethene assimilation in strain JS614 is required. Alkene monooxygenase (AkMO) activity was demonstrated in whole-cell assays and epoxyalkane:coenzyme M transferase (EaCoMT) activity was detected in JS614 cell-free extracts. Pulsed-field gel electrophoresis revealed a 290-kb plasmid (pNoc614) in JS614. Curing experiments and PCR indicated that pNoc614 encodes vinyl chloride/ethene-degradation genes. JS614 vinyl chloride/ethene catabolic genes and flanking DNA (34.8 kb) were retrieved from a fosmid clone. AkMO and EaCoMT genes were found in a putative operon that included CoA transferase, acyl-CoA synthetase, dehydrogenase, and reductase genes. Adjacent to this gene cluster was a divergently transcribed gene cluster that encoded possible coenzyme M biosynthesis enzymes. Reverse transcription-PCR demonstrated the vinyl chloride- and ethene-inducible nature of several genes. Genes encoding possible plasmid conjugation, integration, and partitioning functions were also discovered on the fosmid clone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allen JR, Ensign SA (1999) Two short-chain dehydrogenases confer stereoselectivity for enantiomers of epoxypropane in the multiprotein epoxide carboxylating systems of Xanthobacter strain Py2 and Nocardia corallina B276. Biochemistry 38:247–256

    CAS  PubMed  Google Scholar 

  • Arenghi FLG, Pinti M, Galli E, Barbieri P (1999) Identification of the Pseudomonas stutzeri OX1 toluene-o-xylene monooxygenase regulatory gene (touR) and of its cognate promoter. Appl Environ Microbiol 65:4057–4063

    CAS  PubMed  Google Scholar 

  • Bont JAM de, Harder W (1978) Metabolism of ethylene by Mycobacterium E 20. FEMS Microbiol Lett 3:89–93

    Article  Google Scholar 

  • Broker D, Arenskotter M, Legatzki A, Nies DH, Steinbuchel A (2004) Characterization of the 101-kilobase-pair megaplasmid pKB1, isolated from the rubber-degrading bacterium Gordonia westfalica Kb1. J Bacteriol 186:212–225

    PubMed  Google Scholar 

  • Bucher JR, Cooper G, Haseman JK, Jameson CW, Longnecker M, Kamel F, Maronpot R, Matthews HB, Melnick R, Newbold R, Tennant RW, Thompson C, Waalkes M (2001) Ninth report on carcinogens. In: US Department of Health and Human Services, National Toxicology Program. Available via http://ehis.niehs.nih.gov/roc/ninth/known/vinylchloride.pdf.

  • Byrne A, Olsen R (1996) Cascade regulation of the toluene-3-monooxygenase operon (tbuA1UBVA2C) of Burkholderia pickettii PKO1: role of the tbuA1 promoter (PtbuA1) in the expression of its cognate activator, TbuT. J Bacteriol 178:6327–6337

    CAS  PubMed  Google Scholar 

  • Cardy DL, Laidler V, Salmond GP, Murrell JC (1991) Molecular analysis of the methane monooxygenase (MMO) gene cluster of Methylosinus trichosporium OB3b. Mol Microbiol 5:335–342

    CAS  PubMed  Google Scholar 

  • Clark DD, Allen JR, Ensign SA (2000) Characterization of five catalytic activities associated with the NADPH:2-ketopropyl-coenzyme M [2-(2-ketopropylthio)ethanesulfonate] oxidoreductase/carboxylase of the Xanthobacter strain Py2 epoxide carboxylase system. Biochemistry 39:1294–1304

    CAS  PubMed  Google Scholar 

  • Coleman NV, Spain JC (2003a) Distribution of the coenzyme M pathway of epoxide metabolism among ethene- and vinyl chloride-degrading Mycobacterium strains. Appl Environ Microbiol 69:6041–6046

    CAS  PubMed  Google Scholar 

  • Coleman NV, Spain JC (2003b) Epoxyalkane: coenzyme M transferase in the ethene and vinyl chloride biodegradation pathways of Mycobacterium strain JS60. J Bacteriol 185:5536–5545

    CAS  PubMed  Google Scholar 

  • Coleman NV, Mattes TE, Gossett JM, Spain JC (2002) Phylogenetic and kinetic diversity of aerobic vinyl chloride-assimilating bacteria from contaminated sites. Appl Environ Microbiol 68:6162–6171

    CAS  PubMed  Google Scholar 

  • Cook DM, Farrand SK (1992) The oriT region of the Agrobacterium tumefaciens Ti plasmid pTiC58 shares DNA sequence identity with the transfer origins of RSF1010 and RK2/RP4 and with T-region borders. J Bacteriol 174:6238–6246

    CAS  PubMed  Google Scholar 

  • Danko AS, Luo M, Bagwell CE, Brigmon RL, Freedman DL (2004) Involvement of linear plasmids in aerobic biodegradation of vinyl chloride. Appl Environ Microbiol 70:6092–6097

    CAS  PubMed  Google Scholar 

  • delCardayre SB, Davies JE (1998) Staphylococcus aureus coenzyme A disulfide reductase, a new subfamily of pyridine nucleotide-disulfide oxidoreductase. J Biol Chem 273:5752–5757

    CAS  PubMed  Google Scholar 

  • Graham DE, Xu H, White RH (2002) Identification of coenzyme M biosynthetic phosphosulfolactate synthase. J Biol Chem 277:13421–13429

    Article  CAS  PubMed  Google Scholar 

  • Hartmans S, de Bont JAM (1992) Aerobic vinyl chloride metabolism in Mycobacterium aurum L1. Appl Environ Microbiol 58:1220–1226

    CAS  PubMed  Google Scholar 

  • Hylckama Vlieg JE van, Leemhuis H, Spelberg JHL, Janssen DB (2000) Characterization of the gene cluster involved in isoprene metabolism in Rhodococcus sp. strain AD45. J Bacteriol 182:1956–1963

    PubMed  Google Scholar 

  • Klee HJ, Hayford MB, Kretzmer KA, Barry GF, Kishore GM (1991) Control of ethylene synthesis by expression of a bacterial enzyme in transgenic tomato plants. Plant Cell 3:1187–1193

    CAS  PubMed  Google Scholar 

  • Kotani T, Yamamoto T, Yurimoto H, Sakai Y, Kato N (2003) Propane monooxygenase and NAD+-dependent secondary alcohol dehydrogenase in propane metabolism by Gordonia sp. strain TY-5. J Bacteriol 185:7120–7128

    CAS  PubMed  Google Scholar 

  • Krum JG, Ensign SA (2001) Evidence that a linear megaplasmid encodes enzymes of aliphatic alkene and epoxide metabolism and coenzyme M (2-mercaptoethanesulfonate) biosynthesis in Xanthobacter strain Py2. J Bacteriol 183:2172–2177

    CAS  PubMed  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackbrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 177–203

    Google Scholar 

  • Leahy JG, Batchelor PJ, Morcomb SM (2003) Evolution of the soluble diiron monooxygenases. FEMS Microbiol Rev 27:449–479

    Google Scholar 

  • Nocek B, Jang SB, Jeong MS, Clark DD, Ensign SA, Peters JW (2002) Structural basis for CO2 fixation by a novel member of the disulfide oxidoreductase family of enzymes, 2-ketopropyl-coenzyme M oxidoreductase/carboxylase. Biochemistry 41:12907–12913

    CAS  PubMed  Google Scholar 

  • Nunes-Duby S, Kwon H, Tirumalai R, Ellenberger T, Landy A (1998) Similarities and differences among 105 members of the Int family of site-specific recombinases. Nucleic Acids Res 26:391–406

    Article  CAS  PubMed  Google Scholar 

  • Saeki H, Furuhashi K (1994) Cloning and characterization of a Nocardia corallina B-276 gene cluster encoding alkene monooxygenase. J Ferment Bioeng 78:399–406

    CAS  Google Scholar 

  • Saeki H, Akira M, Furuhashi K, Averhoff B, Gottschalk G (1999) Degradation of trichloroethene by a linear-plasmid-encoded alkene monooxygenase in Rhodococcus corallinus (Nocardia corallina) B-276. Microbiology 145:1721–1730

    CAS  PubMed  Google Scholar 

  • Sajjaphan K, Shapir N, Wackett LP, Palmer M, Blackmon B, Tomkins J, Sadowsky MJ (2004) Arthrobacter aurescens TC1 atrazine catabolism genes trzN, atzB, and atzC are linked on a 160-kilobase region and are functional in Escherichia coli. Appl Environ Microbiol 70:4402–4407

    CAS  PubMed  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sanchez LB, Galperin MY, Muller M (2000) Acetyl-CoA synthetase from the Amitochondriate eukaryote Giardia lamblia belongs to the newly recognized superfamily of acyl-CoA synthetases (nucleoside diphosphate-forming). J Biol Chem 275:5794–5803

    Article  CAS  PubMed  Google Scholar 

  • Sluis MK, Sayavedra-Soto LA, Arp DJ (2002) Molecular analysis of the soluble butane monooxygenase from ‘Pseudomonas butanovora’. Microbiology 148:3617–3629

    CAS  PubMed  Google Scholar 

  • Squillace PJ, Moran MJ, Lapham WW, Price CV, Clawges RM, Zogorski JS (1999) Volatile organic compounds in untreated ambient groundwater of the United States, 1985–1995. Environ Sci Technol 33:4176–4187

    CAS  Google Scholar 

  • Takai S, Hines SA, Sekizaki T, Nicholson VM, Alperin DA, Osaki M, Takamatsu D, Nakamura M, Suzuki K, Ogino N, Kakuda T, Dan H, Prescott JF (2000) DNA Sequence and Comparison of Virulence Plasmids from Rhodococcus equi ATCC 33701 and 103. Infect Immun 68:6840–6847

    CAS  PubMed  Google Scholar 

  • Van Hellemond JJ, Opperdoes FR, Tielens AGM (1998) Trypanosomatidae produce acetate via a mitochondrial acetate:succinate CoA transferase. Proc Natl Acad Sci USA 95:3036–3041

    PubMed  Google Scholar 

  • Verce MF, Ulrich RL, Freedman DL (2000) Characterization of an isolate that uses vinyl chloride as a growth substrate under aerobic conditions. Appl Environ Microbiol 66:3535–3542

    CAS  PubMed  Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119

    Article  CAS  PubMed  Google Scholar 

  • Zhou NY, Chion CK, Leak DJ (1996) Cloning and expression of the genes encoding the propene monooxygenase from Xanthobacter Py2. Appl Microbiol Biotechnol 44:582–588

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Anthony Hay, Ruth Richardson, and Steve Zinder for use of their laboratories and for technical advice. We thank Michelle Detwiler at RPCI for her DNA sequencing expertise and persistence in attempts to sequence the hairpin loop. We also thank Juli Rubin, Brian Weisenstein, and Linda Rankin for technical assistance. The US Strategic Environmental Research and Development Program funded this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy E. Mattes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mattes, T.E., Coleman, N.V., Spain, J.C. et al. Physiological and molecular genetic analyses of vinyl chloride and ethene biodegradation in Nocardioides sp. strain JS614. Arch Microbiol 183, 95–106 (2005). https://doi.org/10.1007/s00203-004-0749-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-004-0749-2

Keywords

Navigation