Skip to main content

Production and Handling of Dehalococcoides Bioaugmentation Cultures

  • Chapter
  • First Online:
Bioaugmentation for Groundwater Remediation

Part of the book series: SERDP ESTCP Environmental Remediation Technology ((SERDP/ESTCP))

Abstract

In its infancy, bioaugmentation technology suffered from overselling and a lack of efficacy data to confirm its reliability. Its more recent application for treating chlorinated solvents, however, has become an accepted and proven remedial technology with many hundreds of successful applications performed to date. The cost effective production of high quality, high cell density bacterial cultures in volumes sufficient to treat actual contaminated sites has been a key to its wide-scale application for site remediation. This chapter describes methods for producing cultures of Dehalococcoides spp. (Dhc) bacteria for remediating sites contaminated with chlorinated solvents including perchloroethene (PCE) and trichloroethene (TCE). A step-by-step process is described for growing Dhc-containing consortia from 160 milliliter starter cultures to 3,200 liter (L) commercial-scale bioaugmentation cultures containing > 1011Dhc/L. The chapter also provides recommendations for quality assurance/quality control procedures, and guidance on culture handling including cell concentration, culture storage and shipping, and field application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Cupples AM, Spormann AM, McCarty PL. 2003. Growth of a Dehalococcoides-like microorganism on vinyl chloride and cis-dichloroethene as electron acceptors as determined by competitive PCR. Appl Environ Microbiol 69:953–959.

    Article  CAS  Google Scholar 

  • Cupples AM, Spormann AM, McCarty PL. 2004. Vinyl chloride and cis-dichloroethene dechlorination kinetics and microorganism growth under substrate limiting conditions. Environ Sci Technol 38:1102–1107.

    Article  CAS  Google Scholar 

  • DeFlaun MF, Steffan RJ. 2002. Bioaugmentation. In Bitton G, ed, Encyclopedia of Environmental Microbiology. John Wiley & Sons, New York, New York, USA, pp 434–442.

    Google Scholar 

  • Duhamel M, Wehr S, Yu L, Rizvi H, Seepersad D, Dworatzek S, Cox EE, Edwards EA. 2002. Comparison of anaerobic dechlorinating enrichment cultures maintained on tetrachloroethene, trichloroethene, cis-dichloroethene and vinyl chloride. Water Res 36:4193–4202.

    Article  CAS  Google Scholar 

  • Dykhuizen DE, Hartl DL. 1983. Selection in chemostats. Microbiol Rev 47:150–168.

    CAS  Google Scholar 

  • Ellis DE, Lutz EJ, Odom JM, Ronald J, Buchanan J, Bartlett C Lee MD, Harkness MR, Deweerd KA 2000. Bioaugmentation for accelerated in situ anaerobic bioremediation. Environ Sci Technol 34:2254–2260.

    Article  CAS  Google Scholar 

  • Fam SA, Findlay M, Fogel S, Pirelli T, Sullivan T. 2004 Full-scale enhanced anaerobic dechlorination with bioaugmentation. In Gavaskar AR, Chen ASC, eds, Proc Fourth Internat Conf on Remediation of Chlorinated and Recalcitrant Compounds. Battelle Press, Columbus, Ohio, USA, Paper 2D-02.

    Google Scholar 

  • Harder W, Kuenen JG, Martin A. 1977. Microbial selection in continuous culture. J. Appl Bacteriol 43:1–24.

    Article  CAS  Google Scholar 

  • Harkness MR, Bracco AA, Brennan MJ Jr, Deweerd KA, Spivack JL. 1999. Use of bioaugmentation to stimulate complete reductive dechlorination of trichloroethene in Dover soil columns. Environ Sci Technol 33:1100–1109.

    Article  CAS  Google Scholar 

  • He J, Holmes V, Lee PKH, Alvarez-Cohen L. 2007. Influence of vitamin B12 and cocultures on the growth of Dehalococcoides isolates in defined medium. Appl Environ Microbiol 73:2847–2853.

    Article  CAS  Google Scholar 

  • He J, Ritalahti KM, Aiello MR, Löffler FE. 2003a. Complete detoxification of vinyl chloride by an anaerobic enrichment culture and idenepsication of the reductively dechlorinating population as Dehalococcoides species. Appl Environ Microbiol 69:996–1003.

    Article  CAS  Google Scholar 

  • He J, Ritalahti KM, Yang K-L., Koenigsberg SS, Löffler FE. 2003b. Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium. Nat 424:62–65.

    Article  CAS  Google Scholar 

  • Heineken FG, O’Conner RJ. 1972. Continuous culture studies on the biosynthesis of alkaline protease, neutral protease, and α-amylase by Bacillus subtilis NRRL-B3411. J Gen Microbiol 73:35–45.

    Article  CAS  Google Scholar 

  • Hendrickson ER, Payne JA, Young RM, Starr MG, Perry MP, Fahnestock S, Ellis DE, Ebersole RC. 2002 Molecular analysis of Dehalococcoides 16 S ribosomal DNA from chloroethene-contaminated sites throughout North America and Europe. Appl Microbiol 68:485–495.

    Article  CAS  Google Scholar 

  • Lee MD, Odom JM, Buchanan RJ Jr. 1998. New perspectives on microbial dehalogenation of chlorinated solvents: Insights from the field. Ann Rev Microbiol 52:423–452.

    Article  CAS  Google Scholar 

  • Lendvay JM., Löffler FE, Dollhopf M, Aiello MR, Daniels G, Fathepure BZ, Gebhard M, Heine R, Helton R, Shi J, Krajmalnik-Brown R, Major CL Jr, Barcelona MJ, Petrovskis E, Tiedje JM, Adriaens P. 2003. Bioreactive barriers: Bioaugmentation and biostimulation for chlorinated solvent remediation. Environ Sci Technol 37:1422–1431.

    Article  CAS  Google Scholar 

  • Ljungdahl LG, Wiegel J. 1986. Working with anaerobic bacteria. In Demain AL, Solomon NA, eds, Manual of Microbiology and Biotechnology. American Society for Microbiology, Washington, D.C., USA, pp 84–96.

    Google Scholar 

  • Löffler FE, Tiedje JM, Sanford RA. 1999. Fraction of electrons consumed in electron acceptor reduction and hydrogen thresholds as indicators of halorespiratory physiology. Appl Environ Microbiol 65:4049–4056.

    Google Scholar 

  • Löffler FE, Sun Q, Li J, Tiedje JM. 2000. 16 S rRNA gene-based detection of tetrachloroethene-dechlorinating Desulfuromonas and Dehalococcoides species. Appl Environ Microbiol 66:1369–1374.

    Article  Google Scholar 

  • Löffler FE, Cole JR, Ritalahti KM, Tiedje JM. 2003. Diversity of dechlorinating bacteria. In Häggblom MM, Bossert ID, ed, Dehalogenation: Microbial Processes and Environmental Applications. Kluwer Academic Press, New York, New York, USA, pp 53–87.

    Google Scholar 

  • Lu X, Wilson JT, Kampbell DH. 2006. Relationship between Dehalococcoides DNA in ground water and rates of reductive dechlorination at field scale. Water Res 40:3131–3140.

    Article  CAS  Google Scholar 

  • Lu X-X, Tao S, Bosma T, Gerritse J. 2001. Characteristic hydrogen concentrations for various redox processes in batch study. J Environ Sci Health, Part A 36:1725–1734.

    Article  CAS  Google Scholar 

  • Major DW, McMaster ML, Cox EE, Edwards EA, Dworatzek SM, Hendrickson ER, Starr MG, Payne JA, Buonamici LW. 2002. Field demonstration of successful bioaugmentation to achieve dechlorination of tetrachloroethene to ethene. Environ Sci Technol 36:5106–5116.

    Article  CAS  Google Scholar 

  • Maymó-Gatell X, Chien YT, Gossett JM, Zinder SH. 1997. Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Sci 276:1568–1571.

    Article  Google Scholar 

  • Maymó-Gatell X, Anguish T, Zinder SH. 1999. Reductive dechlorination of chlorinated ethenes and 1,2-dichloroethane by “Dehalococcoides ethenogenes” 195. Appl Environ Microbiol 65:3108–3113.

    Google Scholar 

  • McCarty PL, Chu M-Y, Kitanidis PK. 2007. Electron donor and pH relationships for biologically enhanced dissolution of chlorinated solvent DNAPL in groundwater. European J Soil Biol 43:276–282.

    Article  CAS  Google Scholar 

  • Moran MJ, Zogorski, S. 2007. Chlorinated solvents in groundwater of the United States. Environ Sci Technol 41:74–81.

    Article  CAS  Google Scholar 

  • Ritalahti KM, Amos BK, Sung Y, Wu Q, Koenigsberg SS, Löffler FE. 2006. Quantitative PCR targeting 16 S rRNA and reductive dehalogenase genes simultaneously monitors multiple Dehalococcides strains. Appl Environ Microbiol 72:2765–2774.

    Article  CAS  Google Scholar 

  • Schaefer CE, Vainberg S, Condee CW, Steffan RJ. 2009. Bioaugmentation for chlorinated ethenes using Dehalococcoides sp.: Comparison between batch and column experiments. Chemosphere 75:141–148.

    Article  CAS  Google Scholar 

  • Seshadri R, Adrian L, Fouts DE, Eisen JA, Phillippy AM, Methe BA, Ward NL, Nelson WC, Deboy RT, Khouri HM, Kolonay JF, Dodson RJ, Daugherty SC, Brinkac LM, Sullivan SA, Madupu R, Nelson KE, Kang KH, Impraim M, Tran K, Robinson JM, Forberger HA, Fraser CM, Zinder SH, Heidelberg JF. 2005. Genome sequence of the PCE-dechlorinating bacterium Dehalococcoides ethenogenes. Sci 307:105–108.

    Article  CAS  Google Scholar 

  • Shelton DR, Tiedje JM. 1984. General method for determining anaerobic biodegradation potential. Appl Environ Microbiol 47:850–857.

    CAS  Google Scholar 

  • Skramstad JD, Hurst CJ, Novak PJ. 2003. Survival of indicator organisms during enrichment on tetrachloroethene. Water Env Res 75:368–376.

    Article  CAS  Google Scholar 

  • Stafford K. 1986. Continuous fermentation. In Demain AL, Solomon NA, eds, Manual of Microbiology and Biotechnology. American Society for Microbiology, Washington, DC, USA, pp 137–151.

    Google Scholar 

  • Steffan RJ, Sperry KL, Walsh MT, Vainberg S, Condee CW. 1999. Field-scale evaluation of in situ bioaugmentation for remediation of chlorinated solvents in groundwater. Environ Sci Technol 33:2771–2781.

    Article  CAS  Google Scholar 

  • Unterman R, DeFlaun MF, Steffan RJ. 2000. Advanced in situ bioremediation – A hierarchy of technology choices. In Klein J, ed, Biotechnology Volume 11b, Environmental Processes II. Wiley VCH, New York, New York, USA, pp399-414.

    Chapter  Google Scholar 

  • Vainberg S, Condee CW, Steffan RJ. 2009. Large scale production of Dehalococcoides sp. containing cultures for bioaugmentation. J Indust Microbiol Biotechnol 36:1189–1197.

    Article  CAS  Google Scholar 

  • Westrick JJ, Mello JW, Thomas RF. 1984. The groundwater supply survey. J Am Water Works Assoc 76:52–59

    CAS  Google Scholar 

  • Yang Y, McCarty PL. 1998. Competition for hydrogen within a chlorinated solvent dehalogenating anaerobic mixed culture. Environ Sci Technol 32:3591–3597.

    Article  CAS  Google Scholar 

  • Zhang JJ, Andrew P, Chiu PC. 2006.1,1-Dichloroethene as a predominant intermediate of microbial trichloroethene reduction. Environ Sci Technol 40:1830–1836

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Steffan, R.J., Vainberg, S. (2013). Production and Handling of Dehalococcoides Bioaugmentation Cultures. In: Stroo, H., Leeson, A., Ward, C. (eds) Bioaugmentation for Groundwater Remediation. SERDP ESTCP Environmental Remediation Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4115-1_3

Download citation

Publish with us

Policies and ethics