Skip to main content
Log in

Large-scale production of bacterial consortia for remediation of chlorinated solvent-contaminated groundwater

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Chlorinated solvents such as perchloroethylene (PCE) and trichloroethylene (TCE) continue to be significant groundwater contaminants throughout the USA. In many cases efficient bioremediation of aquifers contaminated with these chemicals requires the addition of exogenous microorganisms, specifically members of the genus Dehalococcoides (DHC). This process is referred to as bioaugmentation. In this study a fed-batch fermentation process was developed for producing large volumes (to 3,200 L) of DHC-containing consortia suitable for treating contaminated aquifers. Three consortia enriched from three different sites were grown anaerobically with sodium lactate as an electron donor and PCE or TCE as an electron acceptor. DHC titers in excess of 1011 DHC/L could be reproducibly obtained at all scales tested and with all three of the enrichment cultures. The mean specific DHC growth rate for culture SDC-9™ was 0.036 ± 0.005 (standard error, SE)/h with a calculated mean doubling time of 19.3 ± 2.7 (SE) h. Finished cultures could be concentrated approximately tenfold by membrane filtration and stored refrigerated (4°C) for more that 40 days without measurable loss of activity. Dehalogenation of PCE by the fermented cultures was affected by pH with no measurable activity at pH <5.0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cupples AM, Spormann AM, McCarty PL (2003) Growth of a Dehalococcoides-like microorganism on vinyl chloride and cis-dichloroethene as electron acceptors as determined by competitive PCR. Appl Environ Microbiol 69:953–959. doi:10.1128/AEM.69.2.953-959.2003

    Article  PubMed  CAS  Google Scholar 

  2. Cupples AM, Spormann AM, McCarty PL (2004) Comparative evaluation of chloroethene dechlorination to ethane by Dehalococcoides-like microorganisms. Environ Sci Technol 38:4768–4774. doi:10.1021/es049965z

    Article  PubMed  CAS  Google Scholar 

  3. Cupples AM, Spormann AM, McCarty PL (2004) Vinyl chloride and cis-dichloroethene dechlorination kinetics and microorganism growth under substrate limiting conditions. Environ Sci Technol 38:1102–1107. doi:10.1021/es0348647

    Article  PubMed  CAS  Google Scholar 

  4. Duhamel M, Mo K, Edwards EA (2004) Characterization of a highly enriched Dehalococcoides-containing culture that grows on vinyl chloride and trichloroethene. Appl Environ Microbiol 70:5538–5545. doi:10.1128/AEM.70.9.5538-5545.2004

    Article  PubMed  CAS  Google Scholar 

  5. Ellis DE, Lutz EJ, Odom JM, Ronald J, Buchanan J, Bartlett C, Lee MD, Harkness MR, Deweerd KA (2000) Bioaugmentation for accelerated in situ anaerobic bioremediation. Environ Sci Technol 34:2254–2260. doi:10.1021/es990638e

    Article  CAS  Google Scholar 

  6. Griffin BM, Tiedje JM, Löffler FE (2004) Anaerobic microbial reductive dechlorination of tetrachloroethene (PCE) to predominately trans-1, 2 dichloroethene. Environ Sci Technol 38:4300–4303. doi:10.102/es035439g

    Article  PubMed  CAS  Google Scholar 

  7. He J, Ritalahti KM, Aiello MR, Löffler FE (2003) Complete detoxification of vinyl chloride by an anaerobic enrichment culture and identification of the reductively dechlorinating population as Dehalococcoides species. Appl Environ Microbiol 69:996–1003. doi:10.1128/AEM.69.2.996-1003.2003

    Article  PubMed  CAS  Google Scholar 

  8. He J, Ritalahti KM, Yang KL, Koenigsberg SS, Löffler FE (2003) Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium. Nature 424:62–65. doi:10.1038/nature01717

    Article  PubMed  CAS  Google Scholar 

  9. He J, Holmes V, Lee PKH, Alvarez-Cohen L (2007) Influence of vitamin B12 and co-cultures on the growth of Dehalococcoides isolates in defined medium. Appl Environ Microbiol 73:2847–2853. doi:10.1128/AEM.02574-06

    Article  PubMed  CAS  Google Scholar 

  10. He J, Sung Y, Krajmalnik-Brown R, Ritalahti KM, Löffler FE (2005) Isolation and characterization of Dehalococcoides sp. Strain FL2, a trichloroethene (TCE) and 1,2-dichloroethene-respiring anaerobe. Environ Microbiol 7:1442–1450. doi:10.1111/j.1462-2920.2005.00830.x

    Article  PubMed  CAS  Google Scholar 

  11. Hendrickson ER, Payne JA, Young RM, Starr MG, Perry MP, Fahnestock S, Ellis DE, Ebersole RC (2002) Molecular analysis of Dehalococcoides 16S ribosomal DNA from chloroethene-contaminated sites throughout North America and Europe. Appl Microbiol 68:485–495. doi:10.1128/AEM.68.2.485-495.2002

    Article  CAS  Google Scholar 

  12. Holliger C, Wohlfarth G, Diekert G (1999) Reductive dechlorination in the energy metabolism of anaerobic bacteria. FEMS Microbiol Rev 22:383–398. doi:10.1111/j.1574-6976.1998.tb00377.x

    Article  Google Scholar 

  13. Holliger C, Schumacher W (1994) Reductive dehalogenation as a respiratory process. Antonie Van Leeuwenhoek 66:239–246. doi:10.1007/BF00871642

    Article  PubMed  CAS  Google Scholar 

  14. Lee MD, Odom JM, Buchanan RJ Jr (1998) New perspectives on microbial dehalogenation of chlorinated solvents: insights from the field. Annu Rev Microbiol 52:423–452. doi:10.1146/annurev.micro.52.1.423

    Article  PubMed  CAS  Google Scholar 

  15. Lendvay JM, Löffler FE, Dollhopf M, Aiello MR, Daniels G, Fathepure BZ, Gebhard M, Heine R, Helton R, Shi J, Krajmalnik-Brown R, Major CL Jr, Barcelona MJ, Petrovskis E, Tiedje JM, Adriaens P (2002) Bioreactive barriers: bioaugmentation and biostimulation for chlorinated solvent remediation. Environ Sci Technol 37:1422–1431. doi:10.102/es025985u

    Article  Google Scholar 

  16. Löffler FE, Cole JR, Ritalahti KM, Tiedje JM (2003) Diversity of dechlorinating bacteria. In: Häggblom MM, Bossert ID (eds) Dehalogenation: microbial processes and environmental applications. Kluwer Academic Press, New York, pp 53–87. doi: 10.1007/0-306-48011-5_3

  17. Löffler FE, Sun Q, Li J, Tiedje JM (2000) 16S rRNA gene-based detection of tetrachloroethene-dechlorinating Desulfuromonas and Dehalococcoides species. Appl Environ Microbiol 66:1369–1374. doi:10.1128/AEM.66.4.1369-1374.2000

    Article  PubMed  Google Scholar 

  18. Löffler FE, Tiedje JM, Sanford RA (1999) Fraction of electrons consumed in electron acceptor reduction and hydrogen thresholds as indicators of halorespiratory physiology. Appl Environ Microbiol 65:4049–4056

    PubMed  Google Scholar 

  19. Lu X, Wilson JT, Kampbell DH (2006) Relationship between Dehalococcoides DNA in ground water and rates of reductive dechlorination at field scale. Water Res 40:3131–3140. doi:10.1016/j.watres.2006.05.030

    Article  PubMed  CAS  Google Scholar 

  20. Lu X-X, Tao S, Bosma T, Gerritse J (2001) Characteristic hydrogen concentrations for various redox processes in batch study. J Environ Sci Health A 36:1725–1734. doi:10.1081/ESE-100106254

    Article  CAS  Google Scholar 

  21. Major DW, McMaster ML, Cox EE, Edwards EA, Dworatzek SM, Hendrickson ER, Starr MG, Payne JA, Buonamici LW (2002) Field demonstration of successful bioaugmentation to achieve dechlorination of tetrachloroethene to ethene. Environ Sci Technol 36:5106–5116. doi:10.1021/es0255711

    Article  PubMed  CAS  Google Scholar 

  22. Maymó-Gatell X, Anguish T, Zinder SH (1999) Reductive dechlorination of chlorinated ethenes and 1, 2-dichloroethane by “Dehalococcoides ethenogenes” 195. Appl Environ Microbiol 65:3108–3113

    PubMed  Google Scholar 

  23. Maymó-Gatell X, Chien YT, Gossett JM, Zinder SH (1997) Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science 276:1568–1571. doi:10.1126/science.276.5318.1568

    Article  PubMed  Google Scholar 

  24. McCarty PL, Chu M-Y, Kitanidis PK (2006) Electron donor and pH relationships for biologically enhanced dissolution of chlorinated solvent DNAPL in groundwater. Eur J Soil Biol 43:276–282. doi:10.1016/j.ejsobi.2007.03.004

    Article  Google Scholar 

  25. Moran MJ, Zogorski S (2007) Chlorinated solvents in groundwater of the United States. Environ Sci Technol 41:74–81. doi:10.1021/es061553y

    Article  PubMed  CAS  Google Scholar 

  26. Müller JA, Rosner BM, von Abendroth G, Meshulam-Simon G, McCarty PL, Spormann AM (2004) Molecular identification of the catabolic vinyl chloride reductase from Dehalococcoides sp. strain VS and its environmental distribution. Appl Environ Microbiol 70:4880–4888. doi:10.1128/AEM.70.8.4880-4888.2004

    Article  PubMed  Google Scholar 

  27. Ritalahti KM, Amos BK, Sung Y, Wu Q, Koenigsberg SS, Löffler FE (2006) Quantitative PCR targeting 16S rRNA and reductive dehalogenase genes simultaneously monitors multiple Dehalococcoides strains. Appl Environ Microbiol 72:2765–2774. doi:10.1128/AEM.72.4.2765-2774.2006

    Article  PubMed  CAS  Google Scholar 

  28. Schaefer CE, Condee CW, Vainberg S, Steffan RJ (2009) Bioaugmentation for chlorinated ethenes using Dehalococcoides sp.: comparison between batch and column experiments. Chemosphere 75:141–148. doi:10.1016/j.chemosphere.2008.12.041

    Google Scholar 

  29. Shelton DR, Tiedje JM (1984) General method for determining anaerobic biodegradation potential. Appl Environ Microbiol 47:850–857

    PubMed  CAS  Google Scholar 

  30. Smidt H, de Vos WM (2004) Anaerobic microbiol dehalogenation. Annu Rev Microbiol 58:43–73. doi:10.1146/annurev.micro.58.030603.123600

    Article  PubMed  CAS  Google Scholar 

  31. Sung Y, Ritalahti KM, Apkarian RP, Löffler (2006) Quantitative PCR confirms purity of strain GT, a novel trichloroethene-to-ethene-respiring Dehalococcoides isolate. Appl Environ Microbiol 72:1980–1987. doi:10.1128/AEM.72.3.1980-1987.2006

    Article  PubMed  CAS  Google Scholar 

  32. U.S. EPA (1998) U.S. EPA test methods for evaluating solid waste, physical/chemical methods SW846, 3rd edn. Revision 5, 1998

  33. Westrick JJ, Mello JW, Thomas RF (2004) The groundwater supply survey. J Am Water Works Assoc 76:52–59

    Google Scholar 

  34. Yang Y, McCarty PL (1998) Competition for hydrogen within a chlorinated solvent dehalogenating anaerobic mixed culture. Environ Sci Technol 32:3591–3597. doi:10.1021/es991410u

    Google Scholar 

  35. Zhang J, Andrew AP, Chiu PC (2006) 1,1-Dichloroethene as a predominant intermediate of microbial trichloroethene reduction. Environ Sci Technol 40:1830–1836

    Google Scholar 

Download references

Acknowledgments

The authors thank Randi Rothmel, Antonio Soto, Kevin McClay, and Paul Hedman for excellent analytical support. This project was supported by the Environmental Security Technology Certification Program (ESTCP) project number CU-0515. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect those of the US Army Corp. of Engineers, Humphreys Engineer Center Support Activity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Steffan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vainberg, S., Condee, C.W. & Steffan, R.J. Large-scale production of bacterial consortia for remediation of chlorinated solvent-contaminated groundwater. J Ind Microbiol Biotechnol 36, 1189–1197 (2009). https://doi.org/10.1007/s10295-009-0600-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-009-0600-5

Keywords

Navigation