Skip to main content
Log in

On the Reaction Mechanism of MCrAlY Alloys with Oxide–Sulfate Deposits at 1100 °C

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The corrosion of γ-(Ni,Co) + β-(Ni,Co)Al NiCoCrAlY alloys exposed to CaO-rich, Na2SO4-containing deposits in air and CO2–H2O–O2 at 1100 °C was studied with a focus on the mechanisms governing the accelerated attack of γ-rich compositions. Internal oxidation of Al resulted from the breakdown of an initially formed Al2O3 scale, due to its reaction with the deposit. Compared to deposit-free conditions, this scale exhibited: (i) a delayed Al2O3 structure transition from metastable θ to stable α; (ii) finer grains; (iii) a reduced adherence to the metal, to the extent that a gap developed at the metal/oxide interface; and (iv) significant permeability to S, as well as N during air exposures. The occurrence of sulfidation in S-free gases reflected the establishment of an elevated S activity under the molten Na2SO4, due to the locally reduced \(p_{{{\text{O}}_{ 2} }}\). The factors affecting the Al2O3-scale microstructure were examined, as well as the associated consequences on Al consumption and on the transition to internal oxidation. The roles of alloy and gas compositions in the identified mechanisms were also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. R. C. Reed, The superalloys—Fundamentals and applications, (Cambridge University Press, New York, 2006).

    Google Scholar 

  2. S. Bose, High Temperature Coatings, (Butterworth-Heinemann, Burlington, 2007).

    Google Scholar 

  3. D. Clemens, V. Vosberg, L. W. Hobbs, U. Breuer, W. J. Quadakkers and H. Nickel, Fresenius Journal of Analytical Chemistry 355, 1996 (703).

    Google Scholar 

  4. C. Mennicke, D. R. Mumm and D. R. Clarke, Zeitschrift für Metallkunde 90, 1999 (1079).

    Google Scholar 

  5. C. G. Levi, E. Sommer, S. G. Terry, A. Catanoiu and M. Rühle, Journal of the American Ceramic Society 86, 2003 (676).

    Article  Google Scholar 

  6. T. J. Nijdam, L. P. H. Jeurgens, J. H. Chen and W. G. Sloof, Oxidation of Metals 64, 2005 (355).

    Article  Google Scholar 

  7. M. H. Sullivan and D. R. Mumm, Oxidation of Metals 82, 2014 (1).

    Article  Google Scholar 

  8. N. Birks, G. H. Meier and F. S. Pettit, Introduction to the high temperature oxidation of metals, 2nd ed, (Cambridge University Press, New York, 2006).

    Book  Google Scholar 

  9. D. J. Young, High temperature oxidation and corrosion of metals, 1st ed, (Elsevier, Amsterdam, 2008).

    Google Scholar 

  10. S. R. J. Saunders, M. Monteiro and F. Rizzo, Progress in Materials Science 53, 2008 (775).

    Article  Google Scholar 

  11. S. Dryepondt, A. Rouaix-Vande Put and B. A. Pint, Oxidation of Metals 79, 2013 (627).

    Article  Google Scholar 

  12. M. J. Lance, K. A. Unocic, J. A. Haynes and B. A. Pint, Surface and Coatings Technology 260, 2014 (107).

    Article  Google Scholar 

  13. J. A. Goebel, F. S. Pettit and G. W. Goward, Metallurgical Transactions 4, 1973 (261).

    Article  Google Scholar 

  14. J. Stringer, Annual Review of Materials Science 7, 1977 (477).

    Article  Google Scholar 

  15. R. Rapp, Corrosion 42, 1986 (568).

    Article  Google Scholar 

  16. G. Goward, Journal of Engineering for Gas Turbines and Power 2, 1986 (421).

    Article  Google Scholar 

  17. N. Birks, G. Meier and F. Pettit, Chapter 8 in Introduction to the high temperature oxidation of metals, 2nd ed, (Cambridge University Press, Cambridge, 2006), pp. 205–252.

    Book  Google Scholar 

  18. F. Pettit, Oxidation of Metals 76, 2011 (1).

    Article  Google Scholar 

  19. C. G. Levi, J. W. Hutchinson, M.-H. Vidal-Setif and C. A. Johnson, MRS Bulletin 37, 2012 (932).

    Article  Google Scholar 

  20. J. P. Bons, J. Crosby, J. E. Wammack, B. I. Bentley and T. H. Fletcher, Journal of Engineering for Gas Turbines and Power-Transactions of the ASME 129, 2007 (135).

    Article  Google Scholar 

  21. P. Wu, G. Eriksson and A. D. Pelton, Journal of the American Ceramic Society 76, 1993 (2059).

    Article  Google Scholar 

  22. E. M. Levin, C. R. Robbins and H. F. McMurdie (eds.), Phase Diagrams for Ceramists, vol. I, (The American Ceramic Society, Columbus, 1964).

    Google Scholar 

  23. A. Kaiser, B. Sommer and E. Woermann, Journal of the American Ceramic Society 75, 1992 (1463).

    Article  Google Scholar 

  24. K. T. Chiang, G. H. Meier and R. A. Perkins, Journal of Materials for Energy Systems 6, 1984 (71).

    Article  Google Scholar 

  25. T. Gheno, G. H. Meier and B. Gleeson, Oxidation of Metals 84, 2015 (185).

    Article  Google Scholar 

  26. T. Gheno and B. Gleeson, Modes of deposit-induced accelerated corrosion of MCrAlY systems at 1100°C, submitted to Oxidation of Metals

  27. T. Gheno and B. Gleeson, Kinetics of Al2O3 growth by oxidation and dissolution in molten silicate, in preparation.

  28. Materials Preparation Center, Ames Laboratory, US DOE Basic Energy Sciences, Ames, IA. http://www.ameslab.gov/mpc.

  29. C. A. Schneider, W. S. Rasband and K. W. Eliceiri, Nature Methods 9, 2012 (671).

    Article  Google Scholar 

  30. V. K. Tolpygo and D. R. Clarke, Materials at High Temperatures 17, 2000 (59).

    Article  Google Scholar 

  31. I. Barin, Thermochemical data of pure substances, 2nd ed, (VCH, Weinheim, 1993).

    Google Scholar 

  32. M. W. Brumm and H. J. Grabke, Corrosion Science 33, 1992 (1677).

    Article  Google Scholar 

  33. Y. Kitajima, S. Hayashi, T. Nishimoto, T. Narita and S. Ukai, Oxidation of Metals 73, 2010 (375).

    Article  Google Scholar 

  34. G. C. Rybicki and J. L. Smialek, Oxidation of Metals 31, 1989 (275).

    Article  Google Scholar 

  35. W. Zhao and B. Gleeson, Oxidation of Metals 83, 2015 (607).

    Article  Google Scholar 

  36. E. J. Opila, N. S. Jacobson, D. L. Myers and E. H. Copland, JOM 58, 2006 (22).

    Article  Google Scholar 

  37. T. J. Nijdam, L. P. H. Jeurgens and W. G. Sloof, Acta Materialia 53, 2005 (1643).

    Article  Google Scholar 

  38. H. C. Yi, S. W. Guan, W. W. Smeltzer and A. Petric, Acta Metallurgica et Materialia 42, 1994 (981).

    Article  Google Scholar 

  39. C. Wagner, Zeitschrift für Elektrochemie 63, 1959 (772).

    Google Scholar 

  40. R. A. Rapp, Corrosion 21, 1965 (382).

    Article  Google Scholar 

  41. C. Wagner, Corrosion Science 5, 1965 (751).

    Article  Google Scholar 

  42. C. Wagner, Journal of the Electrochemical Society 99, 1952 (369).

    Article  Google Scholar 

  43. G. Gulsoy and G. S. Was, Metallurgical and Materials Transactions A 46A, 2015 (525).

    Article  Google Scholar 

  44. M. Schiek, L. Niewolak, W. Nowak, G. H. Meier, R. Vaßen and W. J. Quadakkers, Oxidation of Metals 84, 2015 (661).

    Article  Google Scholar 

  45. A. Chyrkin, W. G. Sloof, R. Pillai, T. Galiullin, D. Grüner, L. Singheiser and W. J. Quadakkers, Materials at High Temperatures 32, 2015 (102).

    Article  Google Scholar 

  46. H. E. Evans, A. T. Donaldson and T. C. Gilmour, Oxidation of Metals 52, 1999 (379).

    Article  Google Scholar 

  47. W. J. Quadakkers and M. J. Bennett, Materials Science and Technology 10, 1994 (126).

    Article  Google Scholar 

  48. I. G. Wright, B. A. Pint, C. S. Simpson and P. F. Tortorelli, Materials Science Forum 251–254, 1997 (195).

    Article  Google Scholar 

  49. H. Stott and N. Hiramatsu, Materials at High Temperatures 17, 2000 (93).

    Article  Google Scholar 

  50. H. Al-Badairy, G. J. Tatlock and M. J. Bennett, Materials at High Temperatures 17, 2000 (101).

    Article  Google Scholar 

  51. I. G. Wright, R. Peraldi and B. A. Pint, Materials Science Forum 461–464, 2004 (579).

    Article  Google Scholar 

  52. G. J. Tatlock, H. Al-Badairy, M. J. Bennett, R. Newton, J. R. Nicholls and A. Galerie, Materials Science and Technology 21, 2005 (893).

    Article  Google Scholar 

  53. G. Strehl, R. Beaven, B. Lesage and G. Borchardt, Materials and Corrosion 56, 2005 (778).

    Article  Google Scholar 

  54. D. J. Young, A. Chyrkin, J. He, D. Grüner and W. J. Quadakkers, Oxidation of Metals 79, 2013 (405).

    Article  Google Scholar 

  55. A. Chyrkin, N. Mortazavi, M. Halvarsson, D. Grüner and W. J. Quadakkers, Corrosion Science 98, 2015 (688).

    Article  Google Scholar 

  56. J. M. Alvarado-Orozco, R. Morales-Estrella, M. S. Boldrick, G. Trapaga-Martinez, B. Gleeson and J. Munoz-Saldana, Metallurgical and Materials Transactions A 46, 2015 (726).

    Article  Google Scholar 

  57. B. A. Pint, Oxidation of Metals 48, 1997 (303).

    Article  Google Scholar 

  58. N. Birks, in Corrosion of high temperature alloys in multicomponent oxidative environments, eds. Z. A. Foroulis and F. S. Pettit (Electrochemical Society, Las Vegas, 1976), p. 215

  59. M. C. Pope and N. Birks, Oxidation of Metals 12, 1978 (173).

    Article  Google Scholar 

  60. C. S. Giggins and F. S. Pettit, Oxidation of Metals 14, 1980 (363).

    Article  Google Scholar 

  61. X. G. Zheng and D. J. Young, Oxidation of Metals 42, 1994 (163).

    Article  Google Scholar 

  62. T. Gheno, D. Monceau, J. Zhang and D. J. Young, Corrosion Science 53, 2011 (2767).

    Article  Google Scholar 

  63. J. A. Goebel and F. S. Pettit, Metallurgical Transactions 1, 1970 (1943).

    Article  Google Scholar 

  64. T. Gheno and B. Gleeson, Oxidation of Metals 84, 2015 (567).

    Article  Google Scholar 

  65. M. W. Brumm, H. J. Grabke and B. Wagemann, Corrosion Science 36, 1994 (37).

    Article  Google Scholar 

  66. B. Schramm and W. Auer, Materials and Corrosion 47, 1996 (678).

    Article  Google Scholar 

  67. H. J. Grabke and G. H. Meier, Oxidation of Metals 44, 1995 (147).

    Article  Google Scholar 

  68. T. Gheno, M. Zahiri Azar, A. H. Heuer and B. Gleeson, Corrosion Science 101, 2015 (32).

    Article  Google Scholar 

  69. J. A. Goebel and F. S. Pettit, Metallurgical Transactions 1, 1970 (3421).

    Article  Google Scholar 

  70. J. Smialek, Materials at High Temperatures 17, 2000 (71).

    Article  Google Scholar 

  71. A. W. Funkenbusch, J. G. Smeggil and N. S. Bornstein, Metallurgical Transactions A 16, 1985 (1164).

    Article  Google Scholar 

  72. J. G. Smeggil, A. W. Funkenbusch and N. S. Bornstein, Metallurgical Transactions A 17, 1986 (923).

    Article  Google Scholar 

  73. J. L. Smialek, Metallurgical Transactions A 18, 1987 (164).

    Article  Google Scholar 

  74. P. Y. Hou and J. Stringer, Oxidation of Metals 38, 1992 (323).

    Article  Google Scholar 

  75. J. L. Smialek, D. T. Jayne, J. C. Schaeffer and W. H. Murphy, Thin Solid Films 253, 1994 (285).

    Article  Google Scholar 

  76. J. L. Smialek, JOM 52, 2000 (22).

    Article  Google Scholar 

  77. P. Y. Hou and J. L. Smialek, Materials at High Temperatures 17, 2000 (79).

    Article  Google Scholar 

  78. J. L. Smialek and B. A. Pint, Materials Science Forum 369–372, 2001 (459).

    Article  Google Scholar 

  79. P. Y. Hou, T. Izumi and B. Gleeson, Oxidation of Metals 72, 2009 (109).

    Article  Google Scholar 

  80. H. J. Grabke, D. Wiemer and H. Viefhaus, Applied Surface Science 47, 1991 (243).

    Article  Google Scholar 

  81. H. J. Grabke, G. Kurbatov and H. J. Schmutzler, Oxidation of Metals 43, 1995 (97).

    Article  Google Scholar 

  82. P. Y. Hou and K. Priimak, Oxidation of Metals 63, 2005 (113).

    Article  Google Scholar 

  83. S. Y. Hong, A. B. Anderson and J. L. Smialek, Surface Science 230, 1990 (175).

    Article  Google Scholar 

  84. W. Zhang, J. R. Smith, X.-G. Wang and A. G. Evans, Physical Review B 67, 2003 (245414).

    Article  Google Scholar 

  85. Y. Jiang and J. R. Smith, Journal of Materials Science 44, 2009 (1734).

    Article  Google Scholar 

  86. C. T. Fujii and R. A. Meussner, Journal of the Electrochemical Society 111, 1964 (1215).

    Article  Google Scholar 

  87. A. Rahmel and J. Tobolski, Corrosion Science 5, 1965 (333).

    Article  Google Scholar 

  88. C. T. Fujii and R. A. Meussner, Journal of the Electrochemical Society 114, 1967 (435).

    Article  Google Scholar 

  89. J. Ehlers, D. J. Young, E. J. Smaardijk, A. K. Tyagi, H. J. Penkalla, L. Singheiser and W. J. Quadakkers, Corrosion Science 48, 2006 (3428).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Department of Energy through the University Turbine Systems Research (UTSR) Program run by the National Energy Technology Laboratory, award number DE-FE0007271, and Seth Lawson, Project Manager. The authors thank Maryam Zahiri Azar and Arthur Heuer (Case Western Reserve University), as well as Susheng Tan (University of Pittsburgh), for the FIB and TEM work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Gheno.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gheno, T., Gleeson, B. On the Reaction Mechanism of MCrAlY Alloys with Oxide–Sulfate Deposits at 1100 °C. Oxid Met 86, 385–406 (2016). https://doi.org/10.1007/s11085-016-9649-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-016-9649-5

Keywords

Navigation