Skip to main content
Log in

On the formation of interfacial and internal voids inα-Al2O3 scales

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Microstructural observations were used as the basis for a discussion of the formation and growth of voids in alumina scales. Reactive-element additions to alloys and alloy desulfurization appear to inhibit the growth of interfacial voids, thus improving scale adhesion. This phenomenon is analyzed in terms of surface energies. In addition, a model is proposed for the formation of large internal voids in α-Al2O3 scales. These voids appear to be too large to form as a result of vacancy coalescence and are more frequently observed in scales not doped with a reactive element. The model is based on a growth mechanism where inward and outward growing ridges at scale grain boundaries eventually seal off and form internal voids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. A. Ramanarayanan, R. Ayer, R. Petkovic-Luton, and D. P. Leta,Oxid. Met. 29, 445 (1988).

    Google Scholar 

  2. M. J. Bennett, H. Romary, and J. B. Price, inHeat Resistant Materials, K. Natesan and D. J. Tillack, eds. (ASM, Materials Park, OH, 1991), pp. 95–103.

    Google Scholar 

  3. E. Tsuzi,Metall. Trans. 11A, 1965 (1980).

    Google Scholar 

  4. J. Smialek and R. Gibala, Diffusion processes in Al2O3 scales: Void growth, grain growth and scale growth, inHigh Temperature Corrosion, R. A. Rapp, ed. (NACE, Houston, TX, 1983), pp. 274–283.

    Google Scholar 

  5. L. W. Hobbs and T. E. Mitchell, Studies of metal oxidation by transmission electron microscopy, inHigh Temperature Corrosion, R. A. Rapp, ed. (NACE,Houston, TX, 1983), pp. 76–83.

    Google Scholar 

  6. D. A. Voss, MS thesis, Case Western Reserve University, Cleveland, OH (1979), from Ref. 5.

  7. P. Kofstad,Oxid. Met. 24, 265 (1985).

    Google Scholar 

  8. C. H. Yang, G. E. Welsch, and T. E. Mitchell,Mater. Sci. Eng. 69, 351 (1985).

    Google Scholar 

  9. P. Choquet and R. Mevrel,Mater. Sci. Eng. A120, 153 (1989).

    Google Scholar 

  10. J. Doychak and M. Ruble,Oxid. Met. 31, 431 (1989).

    Google Scholar 

  11. A. Czyrska-Filemonowicz, R. A. Versaci, D. Clemens, and W. J. Quadakkers, The effect of yttria content on the oxidation resistance of ODS alloys studied by TEM, inMicroscopy of Oxidation 2, S. B. Newcomb and M. J. Bennett, eds. (Institute of Metals, London, U.K., 1993), pp. 288–297.

    Google Scholar 

  12. B. A. Pint, J. R. Martin, and L. W. Hobbs,Oxid. Met. 39, 167 (1993).

    Google Scholar 

  13. B. A. Pint, A. J. Garratt-Reed, and L. W. Hobbs, The effect of a Zr alloy addition on the oxidation behavior ofβ-NiAl: The transition from benefit to breakdown, inMicroscopy of Oxidation 2, S. B. Newcomb and M. J. Bennett, eds. (Institute of Metals, London, U.K., 1993), pp. 463–475.

    Google Scholar 

  14. B. A. Pint and L. W. Hobbs,Oxid. Met. 41, 203 (1994).

    Google Scholar 

  15. B. A. Pint and L. W. Hobbs,J. Electrochem. Soc. 141, 2443 (1994).

    Google Scholar 

  16. B. A. Pint, A. J. Garratt-Reed, and L. W. Hobbs,Mater. High Temp. 13, 3 (1995).

    Google Scholar 

  17. B. A. Pint, Mater.High Temp. (in press).

  18. B. A. Pint, P. F. Tortorelli, and I. G. Wright,Werkst. Korros. 47, 663.

  19. B. A. Pint, The oxidation behavior of oxide dispersedβ-NiAl, (1995) (unpublished research).

  20. B. A. Pint, The high-temperature environmental behavior of oxide-dispersion-strengthened iron-based alloys (1996) (unpublished research).

  21. J. Stringer,Metall. Rev. 11, 113 (1966).

    Google Scholar 

  22. J. E. Antill and K. A. Peakall,J. Iron Steel Inst. 205, 1136 (1967).

    Google Scholar 

  23. V. R. Howes,J. Electrochem. Soc. 116, 1286 (1969).

    Google Scholar 

  24. J. K. Tien and F. S. Pettit,Metall. Trans. 3, 1587 (1972).

    Google Scholar 

  25. M. S. Seltzer, B. A. Wilcox, and J. Stringer,Metall. Trans. 3, 2391 (1972).

    Google Scholar 

  26. A. Kumar, M. Nasrallah, and D. L. Douglass,Oxid. Met. 8, 227 (1974).

    Google Scholar 

  27. C. S. Giggins, B. H. Kear, F. S. Pettit, and J. K. Tien,Metall. Trans. 5, 1685 (1974).

    Google Scholar 

  28. F. A. Golightly, F. H. Stott, and G. C. Wood,Oxid. Met. 10, 163 (1976).

    Google Scholar 

  29. J. L. Smialek,Metall. Trans. 9A, 309 (1978).

    Google Scholar 

  30. J. M. Allam, D. P. Whittle, and J. Stringer,Oxid. Met. 12, 35 (1978).

    Google Scholar 

  31. H. M. Hindam and W. W. Smeltzer,Electrochem. Soc. 127, 1630 (1980).

    Google Scholar 

  32. C. Barrett, A. S. Kahn, and C. E. Lowell,Electrochem. Soc. 128, 25 (1981).

    Google Scholar 

  33. T. Homma, H. M. Hindam, Y. Pyun, and W. W. Smeltzer.Oxid. Met. 17, 223 (1982).

    Google Scholar 

  34. S. Taniguchi and T. Shibata,Oxid. Met. 25, 201 (1986).

    Google Scholar 

  35. E. P. Katz, B. A. Pint, A. J. Garratt-Reed, and G. J. Yurek, The effect of Y2O3 dispersions on the oxidation behavior of ODS alloys (1987) (unpublished research).

  36. V. Provenzano, K. Sadananda, N. P. Louat, and J. R. Reed,Surf. Coatings Technol. 36, 61 (1988).

    Google Scholar 

  37. H. J. Grabke, D. Weimer, and H. Viefhaus,Appl. Surf. Sci. 47, 243 (1991).

    Google Scholar 

  38. P. Y. Hou and J. Stringer,Oxid. Met. 38, 323 (1992).

    Google Scholar 

  39. M. W. Brumm and H. J. Grabke,Corros. Sci. 34, 547 (1993).

    Google Scholar 

  40. B. A. Pint and L. W. Hobbs,Electrochem. Soc. Ext. Abstr. 93-2 676 (1993).

    Google Scholar 

  41. B. A. Pint,Oxid. Met. 45, 1 (1996).

    Google Scholar 

  42. B. A. Pint and C. S. Simpson,Cyclic oxidation of alumina forming alloys at 1300°C (1995) (unpublished research).

  43. B. A. Pint, The Effect of Reactive Elements on the Growth of Al2O3 Scales, PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, 1992.

    Google Scholar 

  44. B. A. Pint, A. J. Garratt-Reed, and L. W. Hobbs,Study of the microstructure of alumina scales (1993) (unpublished research).

  45. H. E. Evans,Int. Mater. Rev. 40, 1 (1995).

    Google Scholar 

  46. H. E. Evans,Mater. High Temp. 12, 219 (1994).

    Google Scholar 

  47. H. E. Evans, J. R. Nicholls, and S. R. J. Saunders,Solid State Phenom. 41, 137 (1995).

    Google Scholar 

  48. M. Schütze,Mater. High Temp. 12, 237 (1994).

    Google Scholar 

  49. P. Hancock and J. R. Nicholls,Mater. Sci. Technol. 4, 398 (1988).

    Google Scholar 

  50. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann,Introduction to Ceramics (John Wiley & Sons, New York, 1976), p. 209.

    Google Scholar 

  51. U. R. Evans,An Introduction to Metallic Corrosion (Edward Arnold, London, 1948), p. 194.

    Google Scholar 

  52. R. Hales and A. C. Hill,Corros. Sci. 12, 843 (1972).

    Google Scholar 

  53. K. Przybylski and G. J. Yurek,Mater. Sci. Forum 43, 1 (1989).

    Google Scholar 

  54. P. Fox, D. G. Lees, and G. W. Lorimer,Oxid. Met. 36, 491 (1991).

    Google Scholar 

  55. H. J. Grabke, G. Kurbatov, and H. J. Schmutzler,Oxid. Met. 43, 97 (1995).

    Google Scholar 

  56. A. W. Funkenbush, J. G. Smeggil, and N. S. Bornstein,Metall. Trans. 16A, 1164 (1985).

    Google Scholar 

  57. J. G. Smeggil, A. W. Funkenbusch, and N. S. Bornstein,Metall. Trans. 17A, 923 (1986).

    Google Scholar 

  58. J. L. Smialek, The effect of sulfur and zirconium co-doping on the oxidation of NiCrAl, inHigh Temperature Materials Chemistry IV, Proc. Vol. 88-5, Z. A. Munir, D. Cubicciotti, and H. Tagawa, eds. (Electrochemical Society, Pennington, NJ, 1988); pp. 241–247.

    Google Scholar 

  59. J. L. Smialek,Metall. Trans. 22A, 739 (1991).

    Google Scholar 

  60. G. H. Meier, F. S. Pettit, and J. L. Smialek,Werkst. Korros. 46, 232 (1995).

    Google Scholar 

  61. B. A. Pint, I. G. Wright, W. Y. Lee, Y. Zhang, K. Prübner, and K. B. Alexander, Substrate and Bond Coat Compositions: Factors Affecting Alumina Scale Adhesion, submitted toMaterials, Science, and Engineering (1997).

  62. E. Schumann, J. C. Yang, M. J. Graham, and M. Rühle,Werkst. Korros. 46, 218 (1995).

    Google Scholar 

  63. E. Schumann, J. C. Yang, M. Rühle, and M. J. Graham,Oxid. Met. 46, 37 (1996).

    Google Scholar 

  64. J. G. Smeggil, E. L. Paradis, A. J. Shuskus, and N. S. Bornstein,J. Vac. Sci. Technol. A 3, 2569 (1985).

    Google Scholar 

  65. D. R. Sigler,Oxid. Met. 32, 337 (1989).

    Google Scholar 

  66. D. Ting and W. Longmei,J. Less-Common Met. 110, 179 (1985).

    Google Scholar 

  67. K. A. Gschneider and N. Kippenham,Thermochemistry of the Rare Earch Carbides, Nitrides, and Sufides for Steelmaking (Rare Earth Information Center, Institute for Atomic Research, Iowa State University, Ames, IA, 1972).

    Google Scholar 

  68. J. D. Harrison and C. Wagner,Acta Metall. 7, 722 (1959).

    Google Scholar 

  69. G. J. Yurek, Interface Stability During the Oxidation of Binary Alloys, ORNL Report #5116, Oak Ridge National Laboratory, Oak Ridge, TN (1976).

    Google Scholar 

  70. M. Bobeth, W. Pompe, and M. Rockstroh, Modelling of the structural development of oxide scales on Ni3A1 single crystals during the initial stage of oxidation, inMicroscopy of Oxidation 2, S. B. Newcomb and M. J. Bennett, eds. (Institute of Metals, London, U.K., 1993), pp. 412–422.

    Google Scholar 

  71. R. A. Rapp,Metall. Trans. 15A, 765 (1984).

    Google Scholar 

  72. J. Shen and R. A. Rapp,Electrochem. Soc. Ext. Abstr. 93-2, 672 (1993).

    Google Scholar 

  73. J. E. Harris,Met. Sci. 12, 321 (1978).

    Google Scholar 

  74. W. J. Quadakkers, H. Holzbrecher, K. G. Briefs, and H. Beske,Oxid. Met. 32, 67 (1989).

    Google Scholar 

  75. K. P. R. Reddy, J. L. Smialck, and A. R. Cooper,Oxid. Met. 17, 429 (1982).

    Google Scholar 

  76. A. H. Heuer, N. J. Tighe, and R. M. Cannon,J. Am. Ceram. Soc. 63, 53 (1980).

    Google Scholar 

  77. I. G. Wright, W. Y. Lee, and B. A. Pint, High temperature corrosion issues in advanced gas turbines systems intended for power generation, inCorrosion `96 (NACE, Houston, TX, 1996), Paper #96143.

    Google Scholar 

  78. B. A. Pint, L. W. Hobbs,Oxid. Met. 47, 1.

  79. J. Doychak, J. L. Smialek, and C. A. Barrett, Oxidation of Ni-Rich Ni-Al intermetallics, inOxidation of High-Temperature Intermetallics, T. Grobstein and J. Doychak, eds. (TMS, Warrendale, PA, 1988), pp. 41–55.

    Google Scholar 

  80. B. A. Pint, J. R. Martin, and L. W. Hobbs,Solid State Ionics 78, 99 (1995).

    Google Scholar 

  81. B. A. Pint, A. J. Garratt-Reed, and L. W. Hobbs, Analytical electron microscopy study of the duplex scale formed on an ODS Ni3A1 alloy, inMicroscopy of Oxidation 2, S. B. Newcomb and M. J. Bennett, eds. (Institute of Metals, London, U.K., 1993), pp. 423–434.

    Google Scholar 

  82. S. B. Shendye and D. A. Downham,Oxid. Met. 43, 435 (1995).

    Google Scholar 

  83. M. J. Bennett, M. R. Houlton, and G. Dearnaley,Corros. Sci. 20, 69 (1980).

    Google Scholar 

  84. K. L. Luthra and C. L. Briant,Metall. Trans. 19A, 2091 (1988).

    Google Scholar 

  85. A. J. Garratt-Reed, Analysis of boundaries, inProceedings of the 45th Annual Meeting of the Electron Microscopy Society of America, G. Bailey, ed. (San Francisco Press, San Francisco, 1987), pp. 300–303.

    Google Scholar 

  86. A. J. Garratt-Reed, Measurement of segregation at interfaces by AEM, inProceedings of the 50th Annual Meeting of the Electron Microscopy Society of America, G. W. Bailey, J. Bentley, and J. A. Small, eds. (San Francisco Press, San Francisco, CA, 1992), pp. 1206–1207.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pint, B.A. On the formation of interfacial and internal voids inα-Al2O3 scales. Oxid Met 48, 303–328 (1997). https://doi.org/10.1007/BF01670505

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01670505

Key Words

Navigation