Skip to main content
Log in

Scale Formation of Alloy 602 CA During Isothermal Oxidation at 800–1100 °C in Different Types of Water Vapor Containing Atmospheres

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The oxidation behavior of the nickel base Alloy 602 CA in atmospheres, relevant to gas separation units in fossil fired power plants, was investigated in the temperature range 800 to 1100 °C. Isothermal oxidation kinetics were determined in Ar–7 %H2O, Ar–4 %H2–7 %H2O, Ar–20 %O2–7 %H2O and, for comparative purposes, in Ar–20 %O2. The alloy formed an external alumina scale during oxidation at 800 °C, regardless of the atmosphere. Increasing the temperature results in gradual replacement of the alumina scale by an external chromia layer and internal alumina precipitates. The chromia growth rate is affected by the gas composition, due to titanium incorporation in the scale and outwardly protruding metallic nodules. The external alumina scale formation was strongly affected by surface cold work during specimen grinding. This effect, which promoted external alumina scale formation, was retained during exposure at 800 °C but was rapidly lost at higher temperatures resulting in external chromia scale formation and internal oxidation of aluminum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

References

  1. M. Finkenrath, J. Smith, and D. Volk, CCS Retrofit Analysis of the Globally Installed Coal-fired Power Plant Fleet (IEA Publications, 2012). https://www.iea.org/publications/freepublications/publication/CCS_Retrofit.pdf. Accessed 10 June 2015.

  2. International Energy Agency, Global Action to Advance Carbon Capture and Storage: A Focus on Industrial Applications (IEA Publications, 2013). https://www.iea.org/publications/freepublications/publication/CCS_Annex.pdf. Accessed 10 June 2015.

  3. T. van Gestel, D. Sebold, W. A. Meulenberg, M. Bram and H. Buchkremer, Solid State Ionics 179, 2008 (1360).

    Article  Google Scholar 

  4. Y. Xing, S. Baumann, D. Sebold, M. Rüttinger, A. Venskutonis, W. A. Meulenberg and D. Stöver, Journal American Ceramic Society 94, 2010 (861).

    Article  Google Scholar 

  5. Y. Xing, Schriften des Forschungszentrums Jülich, Energy and Environment 130, 2011 (117).

    Google Scholar 

  6. D. Young, High Temperature Oxidation and Corrosion of Metals, Elsevier Corrosion Series, (Elsevier, Amsterdam, 2008).

    Google Scholar 

  7. N. Birks, G. H. Meier and F. S. Pettit, Introduction to the High Temperature Oxidation of Metals, (Cambridge University Press, New York, 2006).

    Book  Google Scholar 

  8. D. Naumenko, W. J. Quadakkers, A. Galerie, Y. Wouters and S. Jourdain, Materials at High Temperatures 20, 2003 (287).

    Article  Google Scholar 

  9. D. J. Young, D. Naumenko, E. Wessel, L. Singheiser and W. J. Quadakkers, Metallurgical and Materials Transactions A 42, 2010 (1173).

    Article  Google Scholar 

  10. M. C. Maris-Sida, G. H. Meier and F. S. Pettit, Metallurgical and Materials Transactions A 34, 2003 (2609).

    Article  Google Scholar 

  11. W. Zhao and B. Gleeson, Oxidation of Metals 83, 2015 (607).

    Article  Google Scholar 

  12. W. J. Quadakkers, A. Elschner, W. Speier and H. Nickel, Applied Surface Science 52, 1991 (271).

    Article  Google Scholar 

  13. A. Jalowicka, W. Nowak, D. J. Young, V. Nischwitz, D. Naumenko and W. J. Quadakkers, Oxidation of Metals 83, 2015 (393).

    Article  Google Scholar 

  14. J.-P. Pfeifer, H. Holzbrecher, W. J. Quadakkers and W. Speier, Journal of Analytical Chemistry 346, 1993 (186).

    Article  Google Scholar 

  15. D. Monceau and B. Pieraggi, Oxidation of Metals 50, 1998 (477).

    Article  Google Scholar 

  16. D. J. Young, D. Naumenko, L. Singheiser and W. J. Quadakkers, Materials and Corrosion 61, 2010 (838).

    Article  Google Scholar 

  17. V. K. Tolpygo and D. R. Clarke, Materials at High Temperatures 17, 2000 (59).

    Article  Google Scholar 

  18. D. M. Lipkin and D. R. Clarke, Oxidation of Metals 45, 1996 (267).

    Article  Google Scholar 

  19. M. Subanovic, Schriften des Forschungszentrums Jülich, Energy & Environment 42, 2009 (188).

    Google Scholar 

  20. G. Böhm and M. Kahlweit, Acta Metallurgica 12, 1964 (641).

    Article  Google Scholar 

  21. J. Zurek, D. J. Young, E. Essuman, M. Hänsel, H. J. Penkalla, L. Niewolak and W. J. Quadakkers, Materials Science and Engineering A 477, 2008 (259).

    Article  Google Scholar 

  22. E. Essumann, G. H. Meier, J. Zurek, M. Hänsel, T. Norby, L. Singheiser and W. J. Quadakkers, Corrosion Science 50, 2008 (1753).

    Article  Google Scholar 

  23. A. Chyrkin, W. G. Sloof, R. Pillai, T. Galiullin, D. Grüner, L. Singheiser and W. J. Quadakkers, Materials at High Temperatures 32, 2015 (102).

    Article  Google Scholar 

  24. N. C. Oforka and B. B. Argent, Journal of the Less-Common Metals 114, 1985 (97).

    Article  Google Scholar 

  25. R. Pillai, H. Ackermann, H. Hattendorf and S. Richter, Corrosion Science 75, 2013 (28).

    Article  Google Scholar 

  26. R. Pillai, H. Ackermann and K. Lucka, Corrosion Science 69, 2013 (181).

    Article  Google Scholar 

  27. H. Ackermann, G. Teneva-Kosseva, H. Köhne, K. Lucka, S. Richter and J. Mayer, Materials and Corrosion 59, 2008 (380).

    Article  Google Scholar 

  28. W. J. Quadakkers, Material Science and Engineering 87, 1987 (107).

    Article  Google Scholar 

  29. P. J. Ennis and W. J. Quadakkers, High Temperature Alloys—Their Exploitable Potential, Elsevier Applied Science, vol. 465, (Elsevier, Amsterdam, 1987).

    Google Scholar 

  30. E. Essuman, G. H. Meier, J. Zurek, M. Hänsel, L. Singheiser, T. Norby and W. J. Quadakkers, Journal of Material Science 43, 2008 (5591).

    Article  Google Scholar 

  31. C. García-Rosales, H. A. Schulze, A. Naoumidis and H. Nickel, Journal of the American Ceramic Society 76, 1993 (2869).

    Article  Google Scholar 

  32. A. Holt and P. Kofstad, Solid State Ionics 117, 1999 (21).

    Article  Google Scholar 

  33. W. J. Quadakkers, Method for Coating a Metallic Nickel-containing Material with a Nickel Catalyst, WO 2004087312 A1, priority date March 31, 2003.

  34. U. Brill, Metall 8, 1992 (778).

    Google Scholar 

  35. M. Stanislowski, E. Wessel, T. Markus, L. Singheiser and W. J. Quadakkers, Solid State Ionics 179, 2008 (2406).

    Article  Google Scholar 

  36. V. V. Joshi, A. Meier, J. Darsell, P. Nachimuthu, M. Bowden and K. S. Weil, Oxidation of Metals 79, 2013 (383).

    Article  Google Scholar 

  37. M. Stanislowski, J. Froitzheim, L. Niewolak, W. J. Quadakkers, K. Hilpert, T. Markus and L. Singheiser, Journal of Power Sources 164, 2007 (578).

    Article  Google Scholar 

  38. G. Teneva-Kosseva, H. Ackermann, H. Köhne, M. Spähn, S. Richter and J. Mayer, Materials and Corrosion 57, 2006 (122).

    Article  Google Scholar 

  39. C. S. Giggins and F. S. Pettit, Journal of the Electrochemical Society 118, (11), 1971 (1782).

    Article  Google Scholar 

  40. I. A. Kvernes and P. Kofstad, Metallurgical Transactions 3, 1972 (1511).

    Article  Google Scholar 

  41. C. Wagner, Zeitschrift für Elektrochemie 63, 1959 (772).

    Google Scholar 

  42. G. H. Meier, K. Jung, N. Mu, M. Yanar, F. S. Pettit, J. Piron-Abellan, T. Olszewski, L. Nieto-Hierro, W. J. Quadakkers and G. R. Holcomb, Oxidation of Metals 74, 2010 (319).

    Article  Google Scholar 

  43. J. A. Nesbitt, Journal of the Electrochemical Society 136, 1989 (1511).

    Article  Google Scholar 

  44. W. Zhao, Y. Kang, J. M. Alvarado Orozco and B. Gleeson, Oxidation of Metals 83, 2015 (187).

    Article  Google Scholar 

  45. R. A. Rapp, Acta Metallurgica 9, 1961 (730).

    Article  Google Scholar 

  46. J.-W. Park and C. J. Altstetter, Metallurgical Transactions A 18, 1987 (43).

    Article  Google Scholar 

  47. A. Sieverts, Zeitschrift für Metallkunde 21, 1929 (37).

    Google Scholar 

  48. C. Wagner, Journal of the Electrochemical Society 99, 1952 (369).

    Article  Google Scholar 

  49. M. W. Brumm and H. J. Grabke, Corrosion Science 33, 1992 (11).

    Article  Google Scholar 

  50. T. Gheno, G. H. Meier and B. Gleeson, Oxidation of Metals 84, 2015 (185).

    Article  Google Scholar 

  51. W. J. Quadakkers, D. Naumenko, E. Wessel, V. Kochubey and L. Singheiser, Oxidation of Metals 61, 2004 (17).

    Article  Google Scholar 

  52. D. J. Young, A. Chyrkin, J. He, D. Grüner and W. J. Quadakkers, Oxidation of Metals 79, 2013 (405).

    Article  Google Scholar 

  53. H. M. Hindam and W. W. Smeltzer, Journal of the Electrochemical Society 127, 1980 (1622).

    Article  Google Scholar 

  54. S. Leistikow, I. Wolf and H. J. Grabke, Materials and Corrosion 38, 1987 (556).

    Article  Google Scholar 

  55. R. W. Cahn and P. Haasen, Physical Metallurgy, 4th ed, (Elsevier, Amsterdam, 1996).

    Google Scholar 

  56. R. Bürgel, P. D. Portella and J. Preuhs, Superalloys 2000, (TMS, Pennsylvania, 2000).

    Google Scholar 

  57. F. Gesmundo and F. Viani, Oxidation of Metals 25, 1986 (269).

    Article  Google Scholar 

  58. W. Zhao and B. Gleeson, Oxidation of Metals 79, 2013 (613).

    Article  Google Scholar 

  59. G. R. Holcomb, Oxidation of Metals 69, 2008 (163).

    Article  Google Scholar 

  60. D. Caplan and M. Cohen, Journal of the Electrochemical Society 108, 1961 (438).

    Article  Google Scholar 

  61. M. Michalik, M. Hänsel, J. Zurek, L. Singheiser and W. J. Quadakkers, Materials at High Temperatures 22, 2005 (213).

    Article  Google Scholar 

  62. N. P. Bansal, P. Singh, S. Widjaja, and D. Singh, in Advances in Solid Oxide Fuel Cells VII. Ceramic Engineering and Science Proceedings, Vol. 32 (2011).

Download references

Acknowledgments

The Authors would like to thank Mrs. Kick and Mr. Cosler for carrying out the TG tests, Mr. Grüner and Mr. Wessel for the SEM analyses, and Mr. Gutzeit for specimen etching. The authors are grateful to Mr. Borzikov for carrying out the Plasma-SNMS analyses. M. Schiek acknowledges financial support of the Deutsche Forschungsgesellschaft (DFG) under Grant No. QU 78/7-1. G. H. Meier gratefully acknowledges the Office of Naval Research for support of his participation in this collaboration under Contract N00014-12-1-0612, Dr. Airan Perez, Scientific Monitor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Schiek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schiek, M., Niewolak, L., Nowak, W. et al. Scale Formation of Alloy 602 CA During Isothermal Oxidation at 800–1100 °C in Different Types of Water Vapor Containing Atmospheres. Oxid Met 84, 661–694 (2015). https://doi.org/10.1007/s11085-015-9595-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-015-9595-7

Keywords

Navigation