Skip to main content
Log in

Corrosion evolution and behaviour of Al–2.1Mg–1.6Si alloy in chloride media

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Owing to the importance of finding better methods and technologies for protecting against corrosion of aluminium alloys, research into the electrochemical characteristics of the corrosion is an ongoing concern. In this paper, the corrosion behaviour of Al–Mg–Si alloys in 3.5 wt% NaCl solution was investigated using multiple methods, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), potentiodynamic polarisation measurement and electrochemical impedance spectroscopy (EIS). The results suggest that corrosion begins with dealloying of Mg, followed by conversion of MgSi particles into Al–Fe–Mn–Si particles. The corrosion rate increased until it reached a peak and then decreased. The increase in the corrosion rate may be attributed to an increased electrochemical driving force, which is produced by anodic dissolution between the matrix and residual MgSi particles. Additionally, the thin re-deposited layer of inert elements also plays an important role in accelerating the anodic process of the corrosion pit. The passivated corrosion pit and narrowed intergranular corrosion (IGC) pathway cause the area of active dissolution to decrease, thus reducing the corrosion rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Liu HW, Xu D, Dao AQ, Zhang G, Lv YL, Liu HF. Study of corrosion behavior and mechanism of carbon steel in the presence of Chlorella vulgaris. Corros Sci. 2015;101:84.

    CAS  Google Scholar 

  2. Yasakau KA, Zheludkevich ML, Sviatlana VL, Mario GF. Mechanism of corrosion inhibition of AA2024 by rare-earth compounds. J Phys Chem B. 2006;110(11):5515.

    CAS  Google Scholar 

  3. Gao H, Wang Z, Shao J. Manufacture and characteristics of Al2O3 composite coating on steel substrate by SHS process. Rare Met. 2019;38(7):704.

    CAS  Google Scholar 

  4. Ding LP, Jia ZH, Zhang ZQ, Sanders R-E, Liu Q, Yang G. The natural aging and precipitation hardening behaviour of Al–Mg–Si–Cu alloys with different Mg/Si ratios and Cu additions. Mater Sci Eng A. 2015;627(11):119.

    CAS  Google Scholar 

  5. Sun FF, Liu NG, Li QY, Liu E, He C, Shi CS, Zhao NQ. Effect of Sc and Zr additions on microstructures and corrosion behavior of Al–Cu–Mg–Sc–Zr alloys. J Mater Sci Technol. 2017;33(9):1015.

    CAS  Google Scholar 

  6. Chen J, Gao M, Tan L, Yang K. Microstructure, mechanical and biodegradable properties of a Mg–2Zn–1Gd–0.5Zr alloy with different solution treatments. Rare Met. 2019;38(6):532.

    CAS  Google Scholar 

  7. King A, Johnson G, Engelberg D, Ludwig W, Marrow J. Observations of intergranular stress corrosion cracking in a grain-mapped polycrystal. Science. 2008;321:382.

    CAS  Google Scholar 

  8. Kumar N, Rao PN, Jayaganthan R, Brokmeier HG. Effect of cryorolling and annealing on recovery, recrystallisation, grain growth and their influence on mechanical and corrosion behaviour of 6082 Al alloy. Mater Chem Phys. 2015;165(1):177.

    CAS  Google Scholar 

  9. Shravan KK, Biswas K. Effect of thiourea on grain refinement and defect structure of the pulsed electrodeposited nanocrystalline copper. Surf Coat Tech. 2013;214:8.

    Google Scholar 

  10. Petch NJ. The cleavage strength of polycrystals. J Iron Steel Inst. 1953;174:25.

    CAS  Google Scholar 

  11. Donelan P. Modelling microstructural and mechanical properties of ferritic ductile cast iron. Mater Sci Technol. 2000;16(3):261.

    CAS  Google Scholar 

  12. Gao XS, Guo YC, Ma ZJ, Wang JL, Yang Z, Li JP. Microstructure and properties of multi-AlSi casting alloy with cooling rate. Chin J Rare Met. 2020;44(4):394.

    Google Scholar 

  13. Rosa DM, Spinelli JE, Osório WR, Garcia A. Effects of cell size and macrosegregation on the corrosion behavior of a dilute Pb–Sb alloy. J Power Sources. 2006;162(1):696.

    CAS  Google Scholar 

  14. Montesperelli G, Rapone M, Nanni F, Travaglia P, Riani P, Marazza R, Gusmano G. Electrochemical and mechanical behaviour of Sn–2.5Ag–0.5Cu and Sn–48Bi–2Zn solders. Mater Corros. 2008;59(8):662.

    CAS  Google Scholar 

  15. Zheng YY, Luo BH, He C, Ren ZW, Yin Y. Effects of Ag addition on the precipitation hardening behaviours and corrosion properties of Al–Mg–Si alloy. Int J Electrochem Sci. 2019;14(1):173.

    CAS  Google Scholar 

  16. Osorio WR, Peixoto LC, Moutinho JD, Gomes LG, Ferreira IL, Garcia A. Corrosion resistance of directionally solidified Al6Cu–1Si and Al8Cu–3Si alloys castings. Mate Design. 2011;32(7):3832.

    CAS  Google Scholar 

  17. Osorio WR, Peixoto LC, Cante MV, Garcia A. Microstructure features affecting mechanical properties and corrosion behavior of a hypoeutectic Al Ni alloy. Mater Design. 2010;31(9):4485.

    CAS  Google Scholar 

  18. Nie FH, Dong HG, Chen S, Li P, Wang LY, Zhao ZX, Li XT, Zhang H. Microstructure and mechanical properties of pulse MIG welded 6061/A356 aluminum alloy dissimilar Butt Joints. J Mater Sci Technol. 2018;34(3):551.

    Google Scholar 

  19. Rajakumar S, Muralidharan C, Balasubramanian V. Predicting tensile strength, hardness and corrosion rate of friction stir welded AA6061-T6 aluminium alloy joints. Mater Des. 2011;32(5):2878.

    CAS  Google Scholar 

  20. Zhang X, Wang ZH, Zhou ZH, Xu JM, Zhong ZJ, Yuan HL. Corrosion behavior of Al3.0 wt%Mg alloy in NaCl solution under magnetic field. Rare Met. 2017;36(8):627.

    CAS  Google Scholar 

  21. Prakashaiah B-G, Kumara D-V, Pandith A-A, Shetty A-N, Rania B. Corrosion inhibition of 2024-T3 aluminum alloy in 3.5% NaCl by thiosemicarbazone derivatives. Corros Sci. 2018;136(15):326.

    CAS  Google Scholar 

  22. Yang LH, Wan YX, Qin ZL, Xu QJ, Min YL. Fabrication and corrosion resistance of a graphene-tin oxide composite film on aluminium alloy 6061. Corros Sci. 2018;130:85.

    CAS  Google Scholar 

  23. Bandeira RM, Drunen JL, Garcia AC, Tremiliosi GF. Influence of the thickness and roughness of polyaniline coatings on corrosion protection of AA7075 aluminum alloy. Electrochim Acta. 2017;240(20):215.

    CAS  Google Scholar 

  24. Li Z, Li C, Gao ZM, Liu YC, Liu XF, Guo QY, Yu LM, Li HJ. Corrosion behavior of Al–Mg2Si alloys with/without addition of AlP master alloy. Mater Charact. 2015;110:170.

    CAS  Google Scholar 

  25. Guan L, Zhou Y, Zhang B, Wang JQ, Han EH, Ke W. Influence of aging treatment on the pitting behavior associated with the dissolution of active nanoscale β-phase precipitates for an Al–Mg alloy. Corros Sci. 2016;103:255.

    CAS  Google Scholar 

  26. Liu YH, Yan LM, Hou XH, Huang DN, Zhang JB, Shen J. Precipitates and corrosion resistance of an Al–Zn–Mg–Cu–Zr plate with different percentage reduction per passes. Rare Met. 2018;37(5):381.

    CAS  Google Scholar 

  27. Chu PW, Mire EL, Marquis EA. Microstructure of localized corrosion front on Mg alloys and the relationship with hydrogen evolution. Corros Sci. 2017;128:253.

    CAS  Google Scholar 

  28. Zheng YY, Luo BH, Bai ZH, Wang J, Yin Y. Study of the precipitation hardening behaviour and intergranular corrosion of Al–Mg–Si alloys with differing Si contents. Metals. 2017;7(10):387.

    Google Scholar 

  29. Minoda T, Yoshida H. Effect of grain boundary characteristics on intergranular corrosion resistance of 6061 aluminum alloy extrusion. Metall Mater Trans A. 2002;33(9):2891.

    Google Scholar 

  30. Blanc C, Roques Y, Mankowski G. Application of phase shifting interferometric microscopy to studies of the behaviour of coarse intermetallic particles in 6056 aluminium alloy. Corros Sci. 1998;40(6):1019.

    CAS  Google Scholar 

  31. Li C, Sun JY, Li ZD, Gao ZM, Liu YC, Yu LM, Li HJ. Microstructure and corrosion behavior of Al10%Mg2Si cast alloy after heat treatment. Mater Charact. 2016;122:142.

    CAS  Google Scholar 

  32. Ahlatci H. Production and corrosion behaviors of the Al12Si–XMg alloys containing in situ Mg2Si particles. J Alloy J Alloy Compd. 2010;503(1):122.

    CAS  Google Scholar 

  33. Larsen MH, Walmsley JC, Lunder O, Nisancioglua K. Effect of excess silicon and small copper content on intergranular corrosion of 6000-series aluminium alloys. J Electrochem Soc. 2010;157(2):161.

    Google Scholar 

  34. Liang WJ, Rometsch PA, Cao LF, Birbilis N. General aspects related to the corrosion of 6xxx series aluminum alloys: exploring the influence of Mg/Si ratio and Cu. Corros Sci. 2013;76:119.

    CAS  Google Scholar 

  35. Lu YL, Wang J, Li XC, Li W, Li R, Zhou DS. Effects of pre-deformation on the microstructures and corrosion behavior of 2219 aluminum alloys. Mater Sci Eng, A. 2018;723(18):204.

    CAS  Google Scholar 

  36. Uddin MS, Colin H, Peter M. Surface treatments for controlling corrosion rate of biodegradable Mg and Mg-based alloy implants. Sci Technol Adv Mater. 2015;16(5):053501.

    CAS  Google Scholar 

  37. Zhang RF, Qiu Y, Qi YS, Birbilis N. A closer inspection of a grain boundary immune to intergranular corrosion in a sensitised Al–Mg alloy. Corros Sci. 2018;133:1.

    CAS  Google Scholar 

  38. Zou Y, Liu Q, Jia Zh, Yuan Y, Ding LP, Wang XL. The intergranular corrosion behavior of 6000-series alloys with different Mg/Si and Cu content. Appl Surf Sci. 2017;405(31):489.

    CAS  Google Scholar 

  39. Guseva G, Derose JA, Schmutz P. Modelling the early stage time dependence of locallised corrosion in aluminium alloys. Electrochim Acta. 2013;88:821.

    CAS  Google Scholar 

  40. Zhao Y, Liu X, Li X, Wang Y, Zhang WN, Liu ZY. Pitting corrosion behavior in novel Mn–N alloyed lean duplex stainless steel containing Cu. J Mater Sci. 2018;53(1):824.

    CAS  Google Scholar 

  41. Eckermann F, Suter T, Uggowitzer P-J, Afseth A, Schmutz P. The influence of MgSi particle reactivity and dissolution processes on corrosion in Al–Mg–Si alloys. Electrochim Acta. 2008;54(2):844.

    CAS  Google Scholar 

  42. Zaid B, Maddache N, Saidi D, Souami N, Bacha N, Ahmed A-S. Electrochemical evaluation of sodium metabisulfite as environmentally friendly inhibitor for corrosion of aluminum alloy 6061 in a chloride solution. J Alloy Compd. 2015;629(25):188.

    CAS  Google Scholar 

  43. Farelas F, Galicia M, Brown B, Nesic S, Castaneda H. Evolution of dissolution processes at the interface of carbon steel corroding in a CO2 environment studied by EIS. Corros Sci. 2010;52(2):509.

    CAS  Google Scholar 

  44. Reis FM, Melo HG, Costa I. EIS investigation on Al 5052 alloy surface preparation for self-assembling monolayer. Electrochim Acta. 2006;51(8):1780.

    CAS  Google Scholar 

  45. Moreto JA, Marino CEB, Bose Filho WW, Rocha LA, Fernandes JCS. SVET, SKP and EIS study of the corrosion behaviour of high strength Al and Al–Li alloys used in aircraft fabrication. Corros Sci. 2014;84:30.

    CAS  Google Scholar 

  46. Thomas S, Medhekar NV, Frankel GS, Birbilis N. Corrosion mechanism and hydrogen evolution on Mg. Curr Opin Solid Stm. 2015;19(2):85.

    CAS  Google Scholar 

  47. Amin MA. A newly synthesized glycine derivative to control uniform and pitting corrosion processes of Al induced by SCN-anions-chemical, electrochemical and morphological studies. Corros Sci. 2010;52(10):3243.

    CAS  Google Scholar 

  48. Coelhoa LB, Taryba M, Alves M, Montemor MF, Olivier MG. Unveiling the effect of the electrodes area on the corrosion mechanism of a graphite-AA2024-T3 galvanic couple by localised electrochemistry. Electrochim Acta. 2018;277(1):9.

    Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Open Fund of Hunan Province Key Laboratory of Safety Design and Reliability Technology for Engineering Vehicle (No. KF1604) and the National Defense Foundation of China (No. 2011-006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing-Hui Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, YY., Luo, BH., He, C. et al. Corrosion evolution and behaviour of Al–2.1Mg–1.6Si alloy in chloride media. Rare Met. 40, 908–919 (2021). https://doi.org/10.1007/s12598-020-01472-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01472-8

Keywords

Navigation